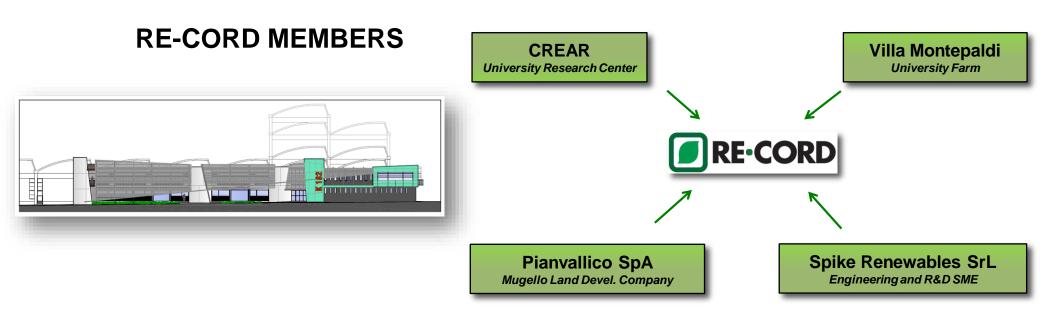


RE-CORD ACTIVITIES ON ALGAE FIELD

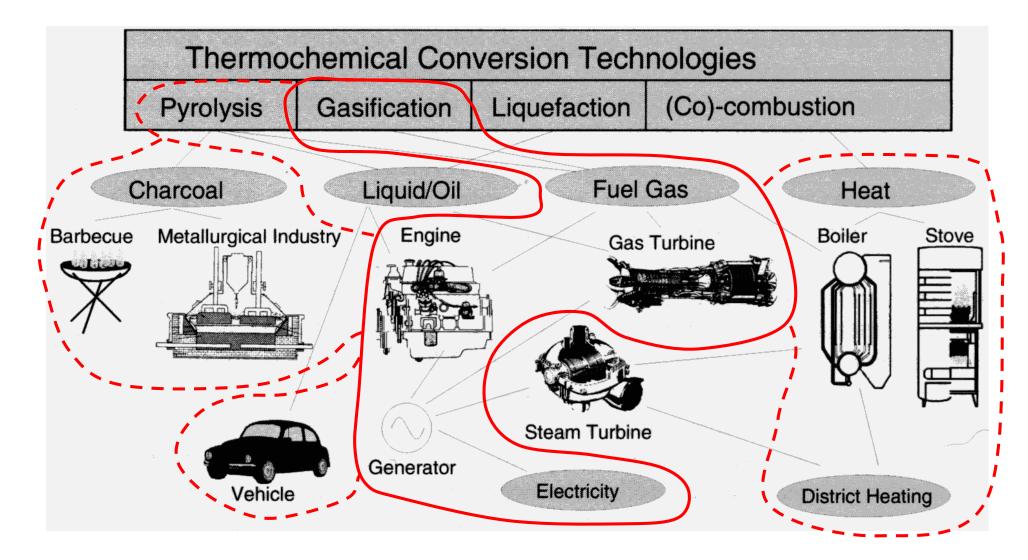
Matteo Prussi (direttor RE-CORD)

Who we are...


RE-CORD

RE-CORD – Renewable Energy Consortium for R&D

- Chemical laboratory fully dedicated to Bioenergy/Biofuels and Renewables (Pianvallico area)
- Various equipments for Solar and Wind energy assessments
- 1 ha fenced experimental area at the Villa Montepaldi Farm (300 ha University farm)
- Preliminary and detailed engineering skills through Spike Renewables SrL
- Academic R&D skills through CREAR/Dept. of Energy Engineering/Dept.s of Agriculture
- Various Renewable Pilot Plants



Pilot and Demo plants RE-CORD

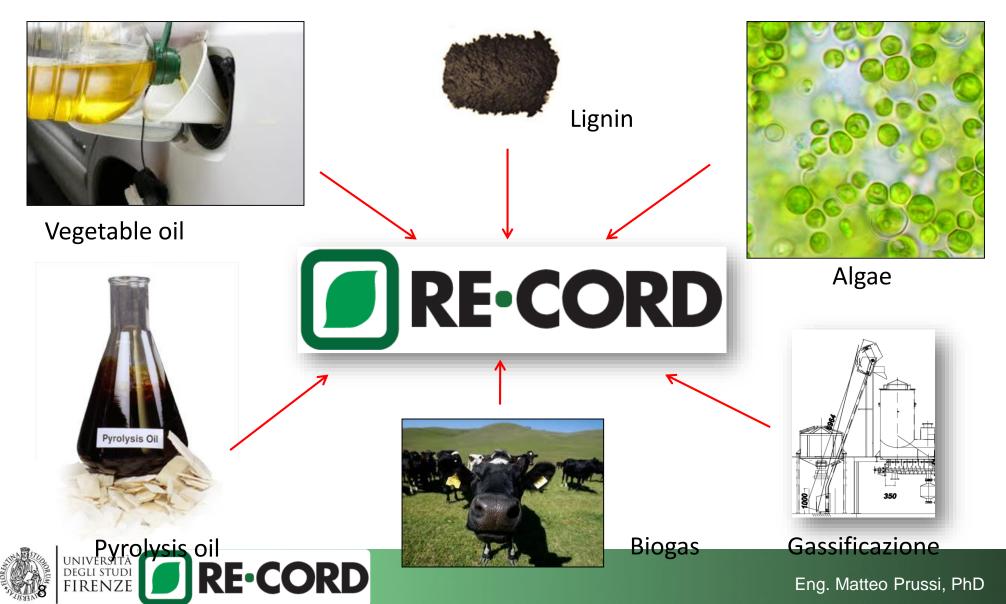
- Brichettatrice (100 kg/h)
- Impianto di pirolisi intermedia catalitica (1.5 kg/h)
- Gassificatore open-top twin-fire (70 kWe)
- Gassificatore downdraft di Imbert (10 kWe)
- > Impianto pilota di Torrefazione/Carbonizzazione (in realizzazione)
- Reattore pilota di metanazione (in realizzazione)
- Microturbina Capstone convertita a biofuels (30 kWe)
- Microturbina Garret convertita a biofuels grezzi (20 kWe, 40 HP)
- > Turbina a combustione esterna a biomassa/NG gas turbine (50-100 kWe)
- Microcogeneratore a olio vegetale puro (5 kWe/10 kWth)
- Motore ad olio vegetale puro (7 kWe)
- Impianti pilota per coltivazione di alghe (in collaborazione con DIBA/F&M)
- > Digestori anaerobici per prove di laboratorio

Fields of interest

Reti, scambi, progetti...

Antarctica

The Biomass LAB



GENERAL OVERVIEW OF RE-CORD LAB INTERESTS

OUR EFFORT ON ALGAE SECTOR

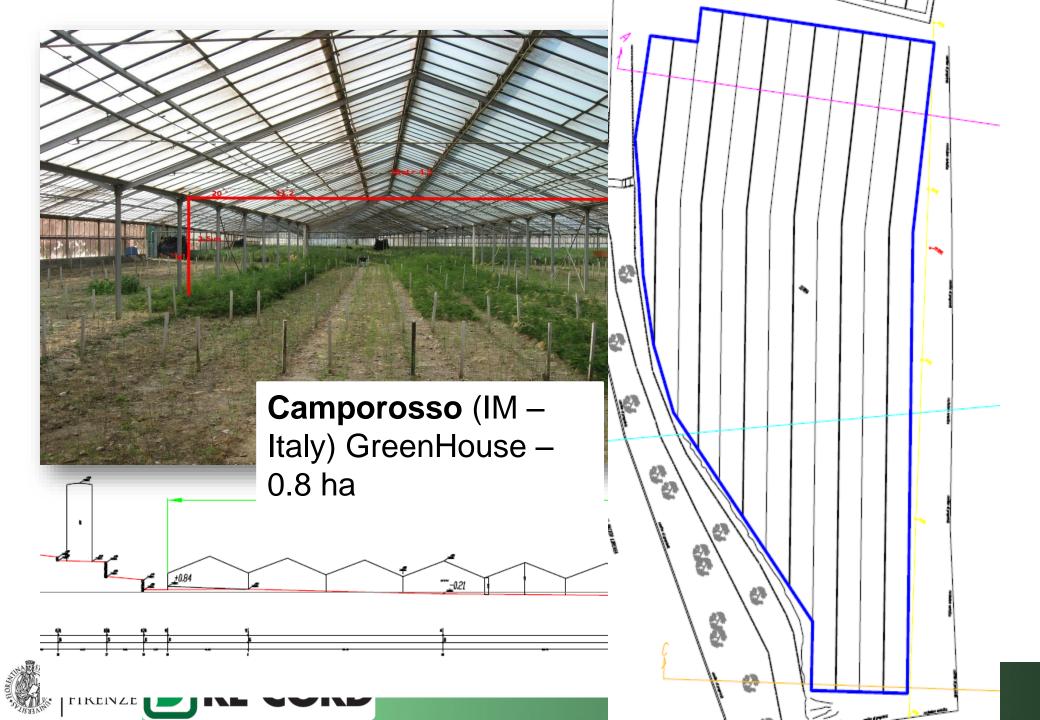
RE-CORD and **Algae**

RE-CORD is **leading** the **desing** of several plants.

Among the other, the most relevant activities are in two large project:

- **BIOFAT** (FP7-EU)
- ALGAEFUELS (Chile)

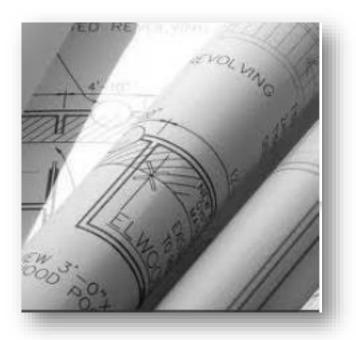
BIOFAT PROJECT PILOT plant in ITALY


FP7 supported project

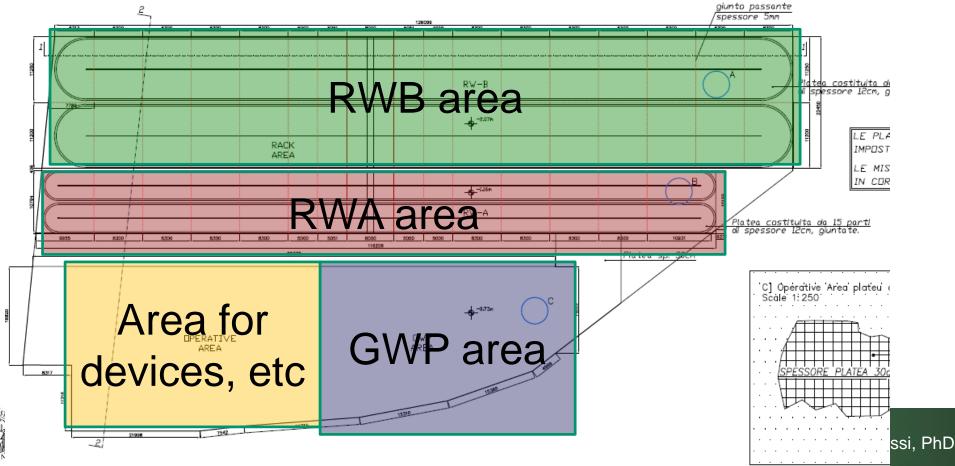
Aim of the project is to **demonstrate** the **algae** feasibility for biofuels **production**.

Target:

- 1 ha pilot plant
- 10 ha demo plant
- 90 ton/yr of biomass



Design of the Plant



The plant is divided in 4 main sectors:

- 1.GWP Inoculum section
- 2.RWA First growth stage
- 3.RWB Second growth stage

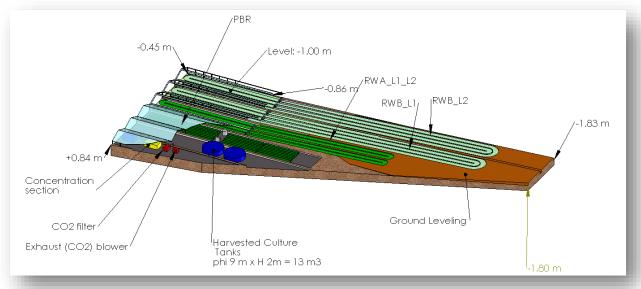
4. Area for devices: centrifuges, pumps, storages, etc.

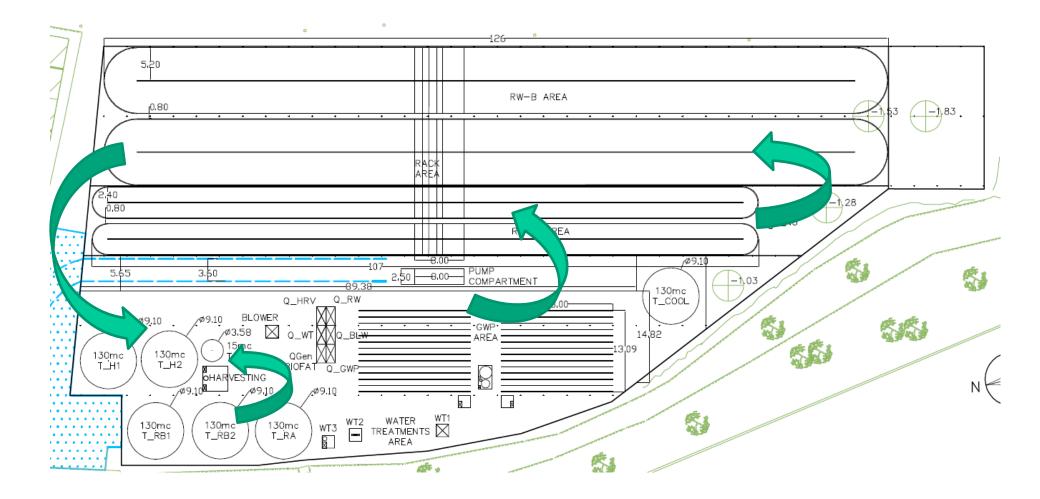
Because each section is complex and made of several devices, a further subdivision has been defined to classify the plant sub-systems:

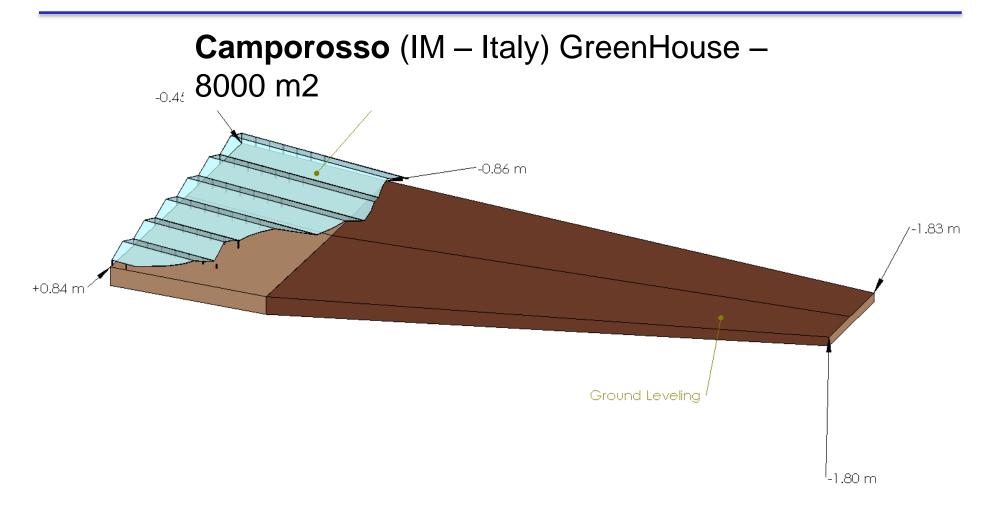
- 100 Nutrient preparation
- 200 CO₂ supply
- 300 Brackish water supply
- 400 **Inoculum section (GWPs area)**
- 500 Growing section (RWA)
- 600 Oil/Carbohydrates accumulation section (RWB)
- 700 Harvesting system
- 800 Water treatment section
- 900 General control board



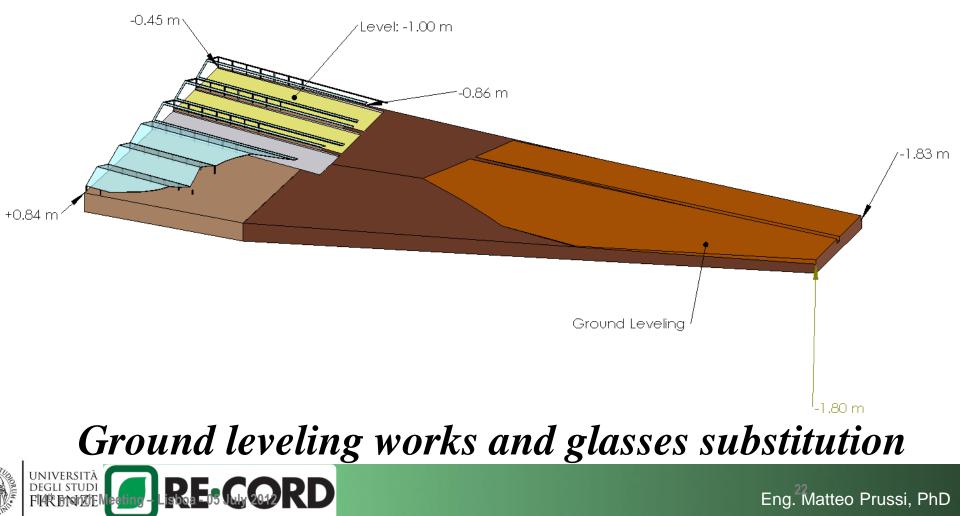
For each sub-section, the main parts have been dimensioned:


500	Growing section (RWA)
501	Layout and position
502	Geometry and specifications
503	Operative parameters (conc, water speed, etc)
510	Supply boards specification
511	Electrical supply
512	Water supply
513	CO ₂ supply and distribution
514	Nutrients
522	Geometry and position
523	Energy requirements
530	Storages
540	Control devices
541	Water level
542	рН
543	Turbidity
LINUVEDSITÀ	Electrical conductivity (salinity)
FIRENZE	enperature

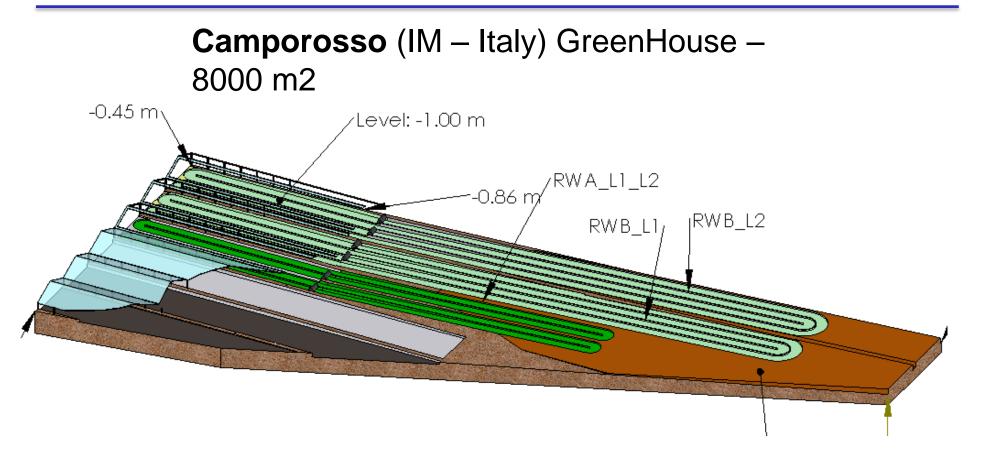

General Plant layout



Eng.²⁰Matteo Prussi, PhD

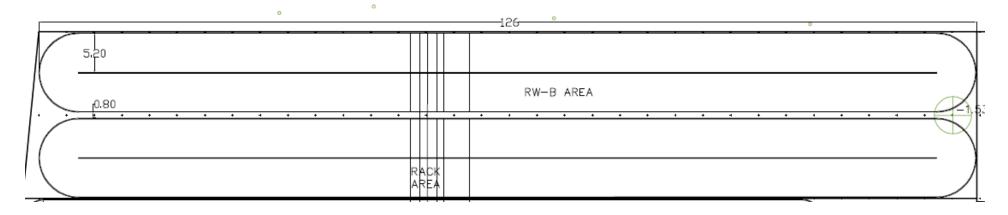


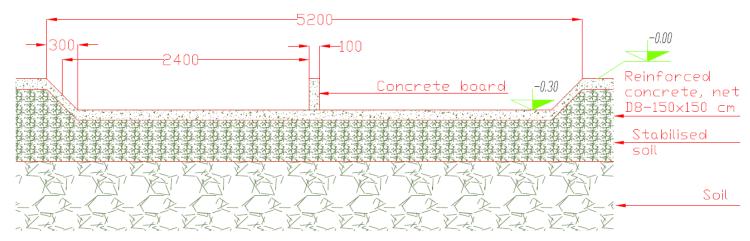
Eng.²¹Matteo Prussi, PhD

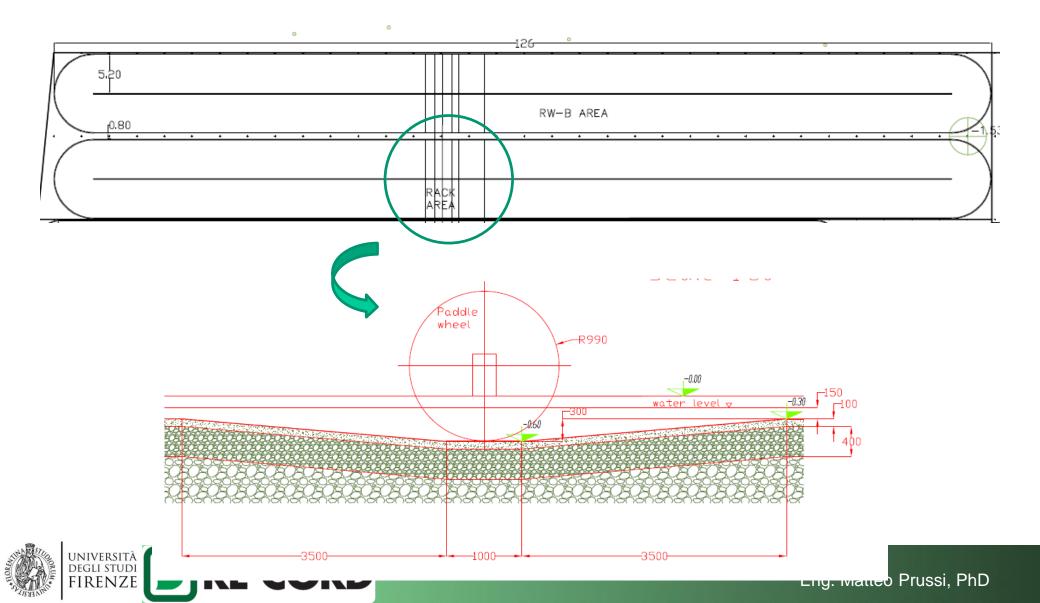


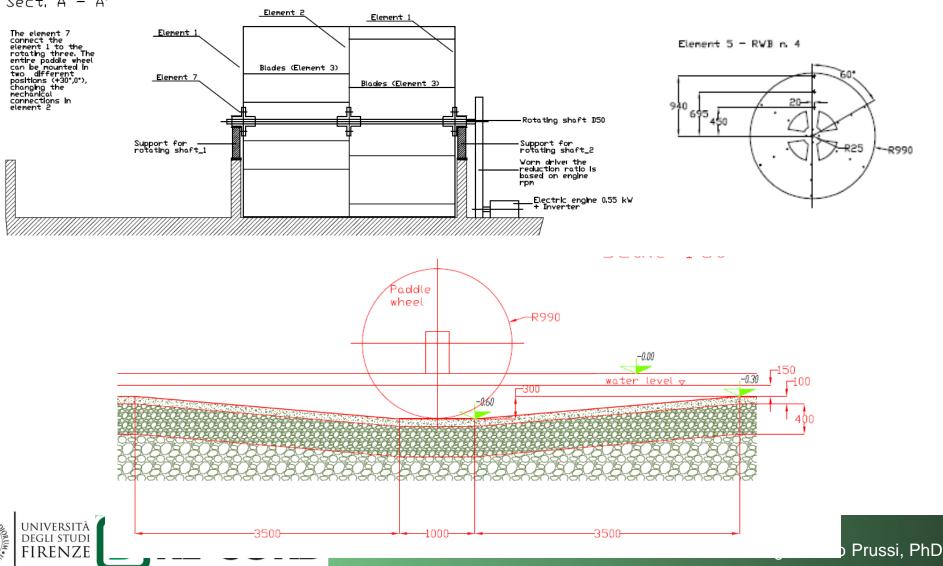
Camporosso (IM – Italy) GreenHouse – 8000 m2

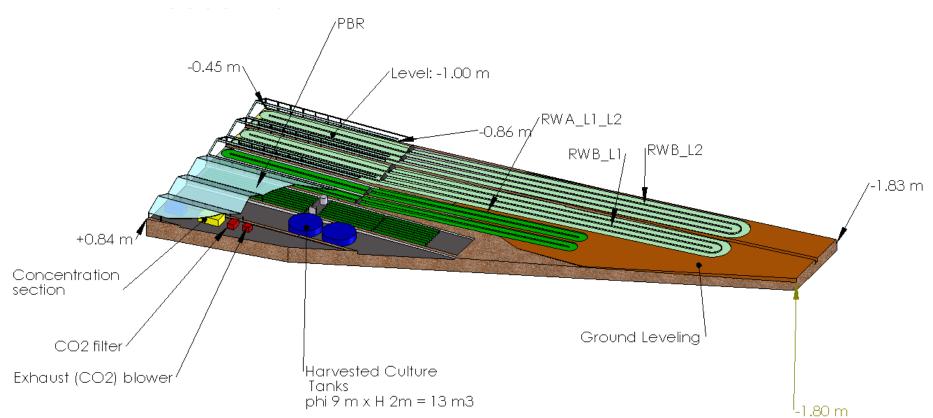



RWP A and B for both L1 and L2



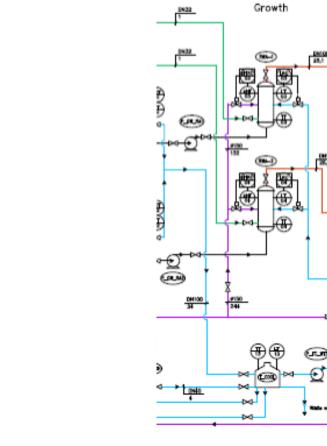

500 m² pond desing




RWA Sect, A - A'

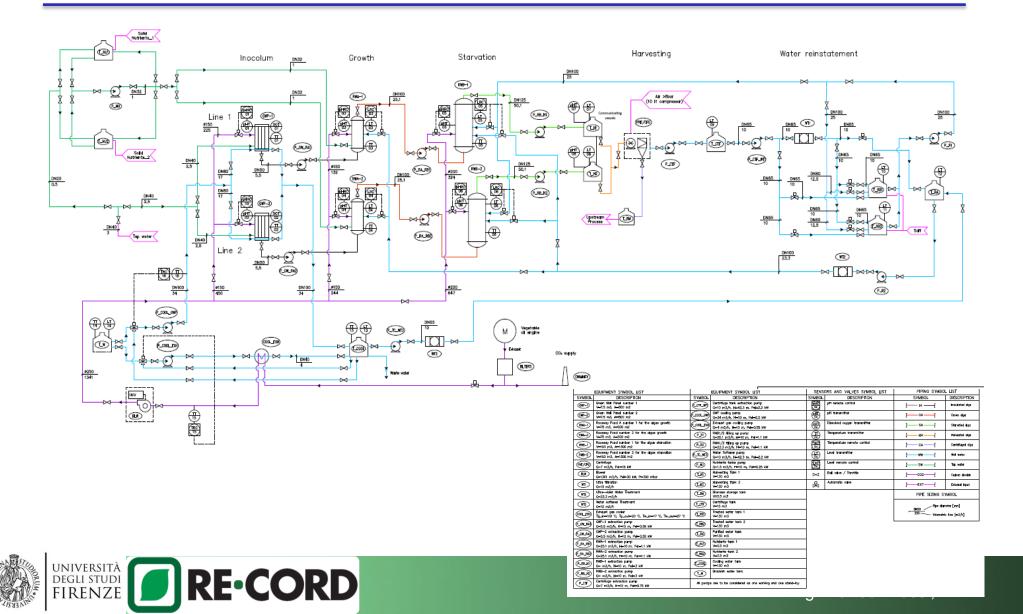
Camporosso (IM - Italy) GreenHouse -

Concentration section and starved culture tanks


Eng.²⁷Matteo Prussi, PhD

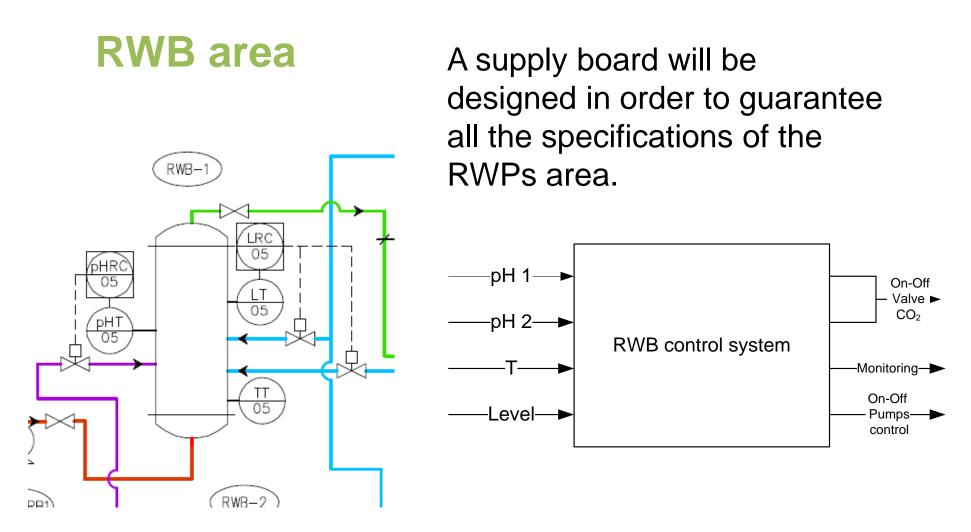
*⊙ ⊛

6



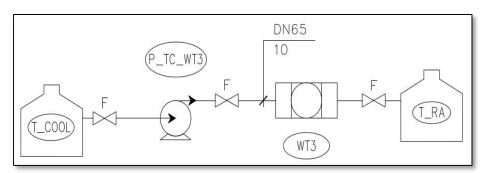
P&ID

Eng.²⁸Matteo Prussi, PhD

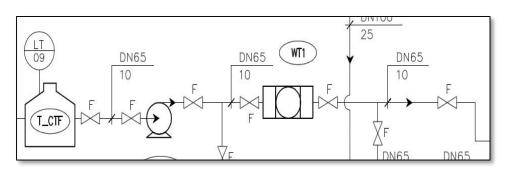


Water management

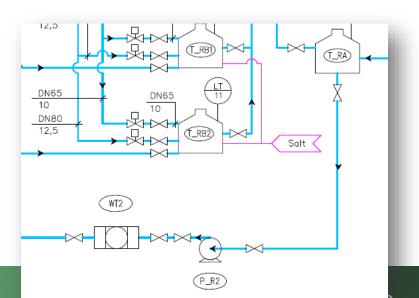
20:00	21:00	22:00	23:00	24:00	01:00	02:00	03:00	04:00	05:00	06:00
	Emptyi	ng RWB								
				Emptying RWA						
							Emptying GWP		Filling up GWP	
						Filling up				
							F	illing up RW/	A	



UNIVERSITÀ Degli studi


FIRENZE

Water treatments


Brackish water treatment : WT3 softener process

RE-CORD

Water for RWA: WT2 - UV Lamps

Water from centrif: WT1 - Ultra-filtration

OBJECTIVES

Testing the ultrafiltration membrane on the output of the centrifuge:

- asses the pilot (up to 9 m3/h) performance;
- estimate the energetic performance;
- evaluate the better membranes cleaning strategy.

GENERAL FIRST CONCLUSIONS

The first tests at CAMPOROSSO show that:

- GOOD RESULTS WITH BIOFAT ALGAE STRAINS (Tetra and Nanno)
- CARBONATE SALTS CAN BE AN ISSUE FOR UF

CO2 Supply

To regulate the CO_2 flux will be used:

•pH meter (two for every production unit, both pond or panel);

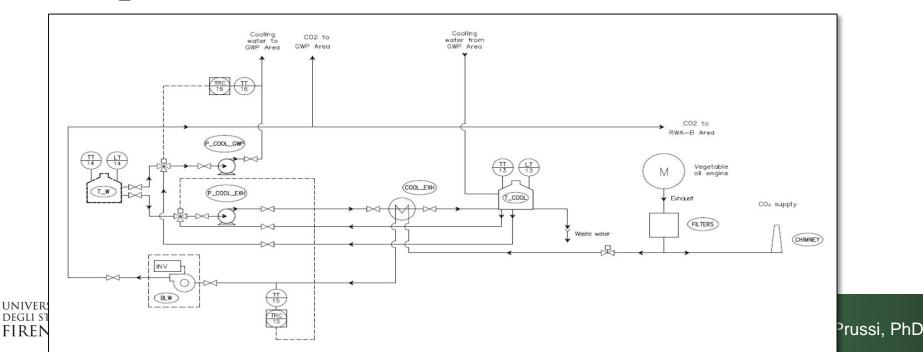
•electric valve (one for every pHmeter and one to control the opening of the chimney);

•flow meter (one before every production unit and one after the blower);

•inverter.

					Nominal CO ₂ request						Seasonal Factor						
Line			No	5°C								T _{out} = 35°C					
					kgCO2/h												
GWP				13.	9					215				231			
RWA		27.8								431			463				
RWB		59.2						917						985			
Total					101 0								1679				
— A	OBUSCH	DP (mbar)	Poli rpm	1500	4 1800	2200	2600	3000	3600	2 4000	4400	4600	4800				
			Q1 m³/min DT °C	8,6 33	10,9 32	14,0 30	17,1 29	20,2 28	24,8 28	27,9 27	31,0 27	32,5 27	34,0 27				
		300	Nsof kW Nmot kW	6,0 7,5	7,3 11	9,1 11	11,1 15	13,2 15	16,7 22	19,3 22	22,1 30	23,6 30	25,1 30				
	RBS 66		Lp(A) sc Lp(A) cc	78 <70	81 <70	85 <70	89 <70	91 <70	95 73	97 75	99 77	100 78	101 79				
	Funzionamento in pressione	400	Q1 m³/min DT °C Nsof kW	8,1 47 7,9	10,5 44 9,6	13,5 41 11,9	16,6 40 14,4	19,7 39 17,0	24,3 38 21,3	27,4 37 24,4	30,5 37 27,7	32,0 37 29,5	33,6 36 31,3				
IIVERS Gli st			Nmot kW Lp(A) sc Lp(A) cc	11 79 <70	11 83 <70	15 87 <70	18,5 90 <70	22 93 71	30 97 75	30 99 77	37 100 78	37 101 79	37 102 80	Eng. Matteo Prussi,			
REN			1 malmin	77	10.0	101	16.0	10.2	02.0	07.0	20.1	21.6	22.0	Eng. Matteo Plussi,			

UNI DEC FII

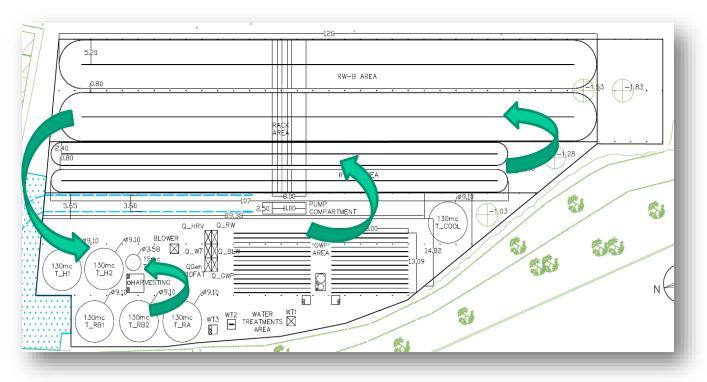

COOLING

Brackish water, from the T_W, is used to cool of the exhausts and of the GWPs.

Once the water passes through the GWP it is sent to the T_COOL storage. The same line is designed to cool the exhaust gasses form the engine; this is required by the blower specifications.

In order to optimize the water consumption, the coolant flow works in a closed cycle between T_COOL and T_W. Night time temperatures are naturally used to dissipate part of the heat.

If the temperature of the T_COOL increases too much, new water is introduced in the system from the T_W.

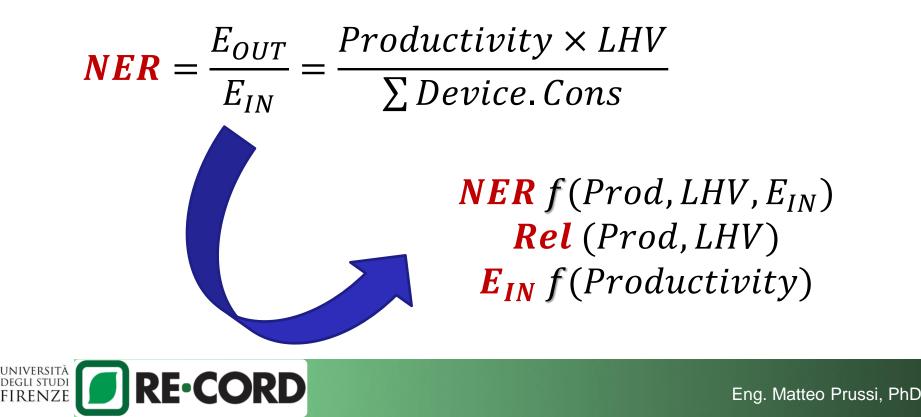


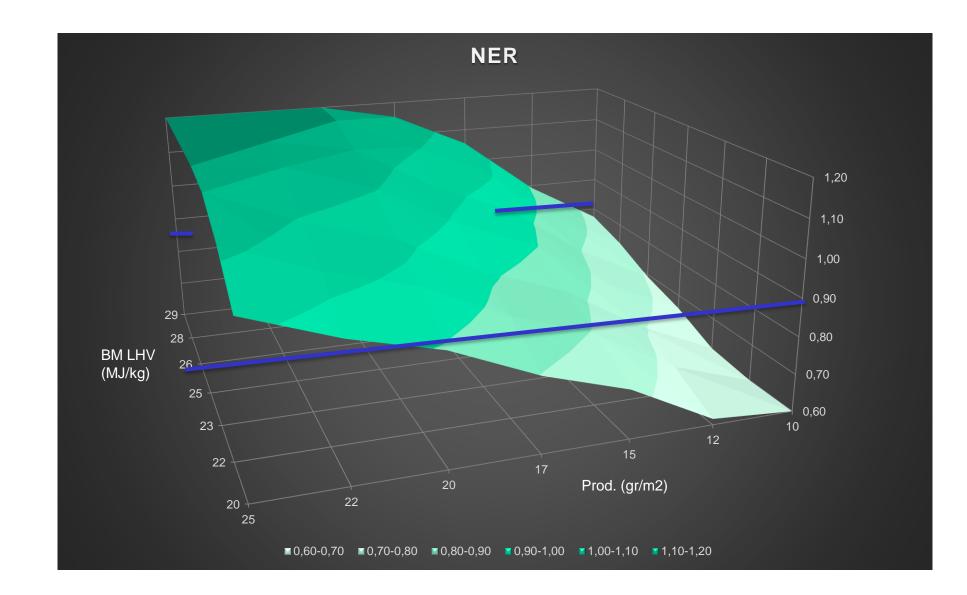
Preliminary energetic assessment

- Nominal Power of each device;
- Operational period for each device;
- Avaerage Energy consumption per cycle of production.

COMPONENT ID	BOARD	DEVICE	Nom.POWER	h_funz 2days cycle	h daily	Average Power	Energy Consumpt
PWA_1		Paddle wheel					
PWA_2	RWP	Paddle wheel					
PWB_1		Paddle wheel					
PWB_2		Paddle wheel					
P_RWA		Pump					
P_RWB		Pump					
Moduli GWP	- GWP	Area GWP					
P_GW_RA_1		Pump					
P_GW_COOLIN G		COOL					
CTF_2		Centrifuge					
COMPR	 Harvesting Area 	Compressor					
		Pump					
WT3	- W_TREAT	PUMP WT2					
		Cool CO2					
PR_1		Pump_Stor_R1					
PR_2		Pump_Stor_R2					
		UF					
WT2		UV_Lamp					
BLW_1	BLOWER	Blower					
GCB	C_BOARD						

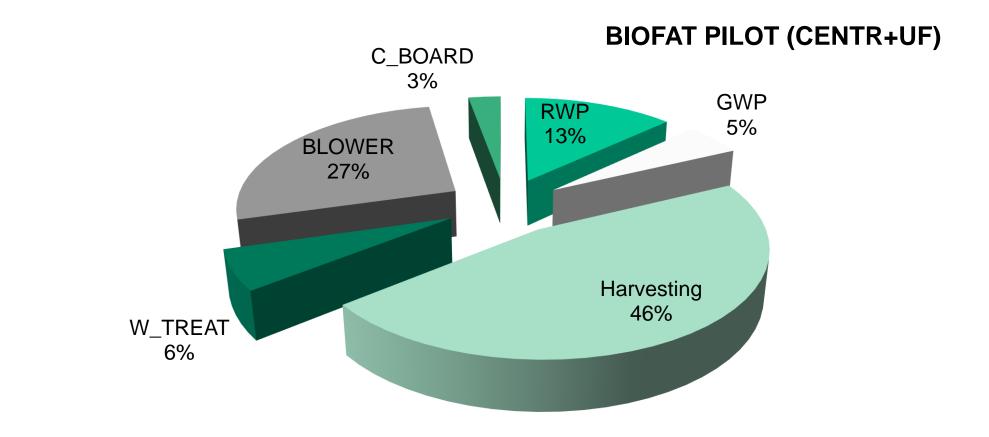
COMPONENT ID	BOARD	DEVICE	Nom.POWER	h_funz 2days cycle	h daily	Average Power	Energy Consumpt
			kW				
PWA_1	RWP	Paddle wheel	0.55	48	24	0.75	
PWA_2		Paddle wheel	0.55	48	24	0.75	
PWB_1		Paddle wheel	1.10	48	24	0.75	
PWB_2		Paddle wheel	1.10	48	24	0.75	
P_RWA		Pump	1.10	3	1.5	1	
P_RWB		Pump	3.00	4	2	1	
Moduli GWP	GWP	Area GWP	0.76	48	24	1	
P_GW_RA_1		Pump	0.55	2	1	1	
P_GW_COOLIN G		COOL	2.20	6	3	1	
CTF_2	- Harvesting Area	Centrifuge	15.00	36	18	0.85	
COMPR		Compressor	1.00	30	15	0.25	
		Pump	0.75	30	15	0.5	
WT3	W_TREAT	PUMP WT2	2.20	8	4	1	
		Cool CO2	0.55	24	12	0.75	
PR_1		Pump_Stor_R1	1.10	5	2.5	1	
PR_2		Pump_Stor_R2	1.10	2	1	1	
		UF	2.83	36	18	0.25	
WT2		UV_Lamp	0.75	3	1.5	1	
BLW_1	BLOWER	Blower	25.00	20	10	0.55	
GCB	C_BOARD		3.00	48	24	0.2	
			64.19				

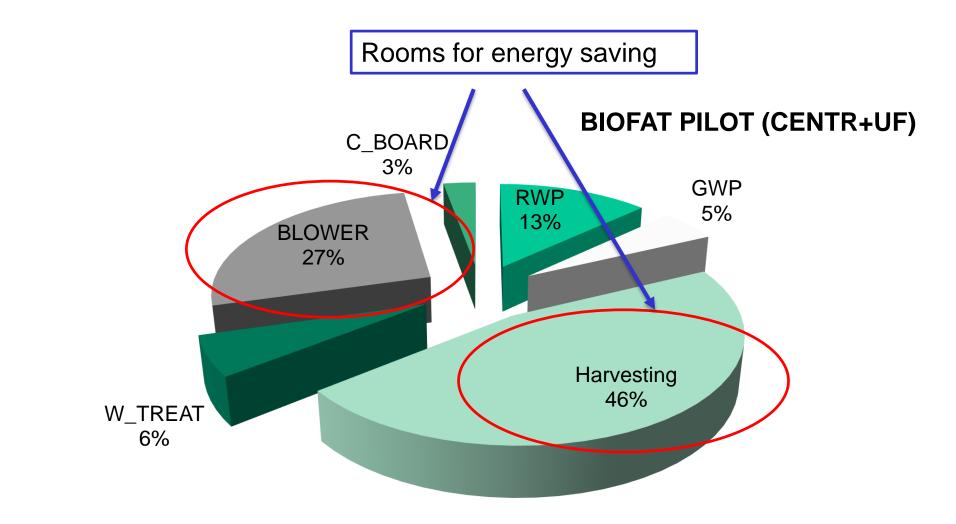



COMPONENT ID	BOARD	DEVICE	Nom.POWER	h_funz 2days cycle	h daily	Average Power	Energy Consumpt	
			kW				kWh/day	%
PWA_1	RWP	Paddle wheel	0.55	48	24	0.75	9.9	1.9
PWA_2		Paddle wheel	0.55	48	24	0.75	9.9	1.9
PWB_1		Paddle wheel	1.10	48	24	0.75	19.8	3.8
PWB_2		Paddle wheel	1.10	48	24	0.75	19.8	3.8
P_RWA		Pump	1.10	3	1.5	1	1.7	0.3
P_RWB		Pump	3.00	4	2	1	6.0	1.2
		-						
Moduli GWP		Area GWP	0.76	48	24	1	18.2	3.5
P_GW_RA_1	GWP	Pump	0.55	2	1	1	0.6	0.1
P_GW_COOLIN G		COOL	2.20	6	3	1	6.6	1.3
								0.0
CTF_2	- Harvesting Area -	Centrifuge	15.00	36	18	0.85	229.5	44.6
COMPR		Compressor	1.00	30	15	0.25	3.8	0.7
		Pump	0.75	30	15	0.5	5.6	1.1
WT3	W_TREAT	PUMP WT2	2.20	8	4	1	8.8	1.7
		Cool CO2	0.55	24	12	0.75	5.0	1.0
PR_1		Pump_Stor_R1	1.10	5	2.5	1	2.8	0.5
PR_2		Pump_Stor_R2	1.10	2	1	1	1.1	0.2
		UF	2.83	36	18	0.25	12.8	2.5
WT2		UV_Lamp	0.75	3	1.5	1	1.1	0.2
BLW_1	BLOWER	Blower	25.00	20	10	0.55	137.5	26.7
GCB	C_BOARD		3.00	48	24	0.2	14.4	2.8
			64.19				514.65	kWh/day

PRELIMINARY ENERGY ASSESSMET Net Energy Ratio

Once the plant energy consumptio is known it is possible to evaluate the Net Energy Ratio:

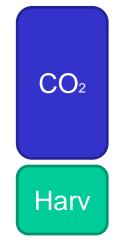



PRELIMINARY ENERGY ASSESSMET CAMPOROSSO – layout nr. 1

BIOFAT		
Area	4500 m2	%
RWP	67.05	13.0
GWP	25.35	4.9
Harvesting Area	238.88	46.4
W_TREAT	31.48	6.1
BLOWER	137.50	26.7
C_BOARD	14.40	2.8
TOTAL CONS.	514.65	
BM_PROD	54.00	kg/day @ 12 gr/m2/day
LHV_algae	7.78	kWh/kg (28 MJ/kg)
NER (Eout/Ein)	0.82	

Energy Saving can be achieved by:

- Increase the CO₂ content in the flue gas;
- Increase the carbonation efficiency;
- Increase the blower efficiency by smart grid control;
- Pushing on UF as system for pre-concentration (not only water treatment);
- Smart Paddle Wheels speed regulation f(Irrad, Tamb);
- Investigate the other parasitic costs;



Energy Saving can be achieved by:

- Increase the CO₂ content in the flue gas;
- Increase the carbonation efficiency;
- Increase the blower efficiency by smart grid control;
- Pushing on UF as system for pre-concentration (not only water treatment);
- Smart Paddle Wheels speed regulation f(Irrad, Tamb);
- Investigate the other parasitic costs;

Energy Saving can be achieved by:

- Increase the CO₂ content in the flue gas;
- Increase the carbonation efficiency;
- Increase the blower efficiency by smart grid control;
- Pushing on UF as system for pre-concentration (not only water treatment);
- Smart Paddle Wheels speed regulation f(Irrad, Tamb);
- Investigate the other parasitic costs;

 CO_2

Harv

RWP

Energy Saving can be achieved by:

- Increase the CO2 content in the flue gas;
- Increase the carbonation efficiency;
- Increase the blower efficiency by smart grid control;
- Pushing on UF as system for pre-concentration (not only water treatment);
- Smart Paddle Wheels speed regulation f(Irrad, Tamb);
- Investigate the other parasitic costs;

ALGAEFUELS Project

Chile

AlgaeFuels Project

Plants and targets:

- Mejillones (Antofagasta)
 - 0.7 ha plant for biofuels production

•El Carmelo (Iquique) •1 ha plant for fish feeding and proteins production

Mejillones plant

Location:

E-CI (suez GDF) power plant. Coal supply.

Source of CO₂:

Power plant feed by coal.

Target:

Reduce CO2 impact rom power production.

Biofuels production.

Mejillones plant

Plant Optimization needed

El Carmelo plant

Location:

La Tirana (Iquique) Desert Area @ 1000 m.a.s.l.

Source of CO₂:

Energy production for algae process

Target:

- 1. Proteins
- 2. Nutraceutical products
- 3. Fish feed.

El Carmelo plant

Location:

La Tirana (Iquique) Desert Area @ 1000 m.a.s.l.

Source of CO2:

Energy production for algae process

Target:

- 1. Proteins
- 2. Nutraceutical products
- 3. Fish feed.

Thanks for your attention

