Biorefinery: chemicals and materials from biomass

Rob Bakker SAHYOG Twinning workshop/session 3: Biorefinery

Wageningen UR (University & Research centre)

Two pillars:

- Wageningen University
- CRO (9 Specialized Contract Research Institutes)
- Annual budget 2012: 650M€
- About 6500 employees (±50/50 WU en CRO)
- 9500 BSc/MSc students
- 1200 PhD (>125 countr.)

Wageningen University

BioRefinery @ Food & Biobased Research

Leading research group in the Netherlands

- 80+ fte, 12 M€ turnover
- Confidential bilateral projects with multination SMEs
- Public-private sponsored projects
- Three interconnected Programmes:
 - Biorefinery
 - Biobased Chemicals & Fuels
 - Materials

Close link with Food Technology Centre

Value vs volume?

Pathways around platforms:

Biomass Characterisation

Lignocellulose is a complex structure

- chemical composition: structural carbohydrates, starch, lignin, proteins, extractives
- -Many advanced analytical methods developed: HPLC, GPC, GC-MS, UPLC, MALDI-TOF, TGA, etc.

Lignin

Lignocellulose pretreatment

Present in most plant material

- Part of secondary cell wall in plant cells
- adds resistance to degradation and pathogens

Mild pretreatment

Selective extraction of lignin, C5 sugars, polyols, proteins, starch

Reduce water holding capacity of biomass

Process integration, reduce costs

• Valorise all streams!

OD & BIOBASED RESEARCH

Gain more fundamental insights in pretreatment process in close collaboration with academic partners

WAGENINGENUR

Source; M.v. Gool; Wageningen University, 2012

Straw to fermentable sugars, lignin

inhibitors

monomeric sugars, with low fermentation

Fractionation efficiency

- Delignification up to 70 80%
- Improvement of enzymatic degradability

Biorefinery of brown seaweed

WAGENINGEN UR

-Produce chemicals based on cellulose, monomeric sugars, lignin, fatty acids, and proteins from biomass

Two approaches:

-Conversion to <u>existing chemicals</u>: "drop -in"

- Example: Aromatic platform chemicals (BTX) and phenols for resins from Lignin
- -Conversion to <u>new chemicals</u>: new process development
 - Example: FDCA (furan dicarboxylic acid) from carbohydrates, for production of PEF

Upscaling

Pretreatment: 2 to
50 L batch; 5 - 10
kg/h continuous
Hydrolysis and
fermentation: 20 - 1000 L

-Downstream processing

Small Scale pretreatment of lignocellulose

- System size: 40 kton biomass per year (dry basis)
- Adapted to wet or dry biomass
- Fermentation of sugars to products
- Lignin conversion to electricity
 - Coupled to existing CHP facilities
 - Removal of unwanted elements (no ash fouling) prior to combustion

European Polysaccharide Network Of Excellence

Production of dissolving pulp from empty fruit bunches via acetic acid pulping process

Interest and potential for collaboration

- -Conversion of non-traditional feedstocks: oil palm byproducts, bamboo, sugar can trash, etc
- -Mild pretreatment of agro-residues
- -Small scale conversion concepts
- -Lignin valorisation
- -Sustainability and full biomass chain development

Robert.bakker@wur.nl

