

Lignocellulosic Ethanol Technology : Challenges

and

Praj Advanced Cellulosic Ethanol (PACE) Technology

Pramod Kumbhar, Ph.D. Praj Industries Limited

- Introductions
- Why Cellulosic Ethanol? : The Indian Context
- Challenges
- "PACE" Technology
- "PACE" Demonstration Plant
- Praj Biorefinery

Praj Industries Limited - Background

- Established in 1984
 - 1st Company to avail of VC
 - Listed on Indian Stock Exchanges
- Business Lines
 - BioEthanol
 - Breweries
 - Water and Wastewater
 - Sugar and Ethanol Performance Enhancers
 - Livestock Health and Nutrition
 - Energy Crops Services
 - Critical Process Equipment
- Over 500 references in 60 countries
- Over 275,000 sq ft of world class manufacturing facilities meeting global standards

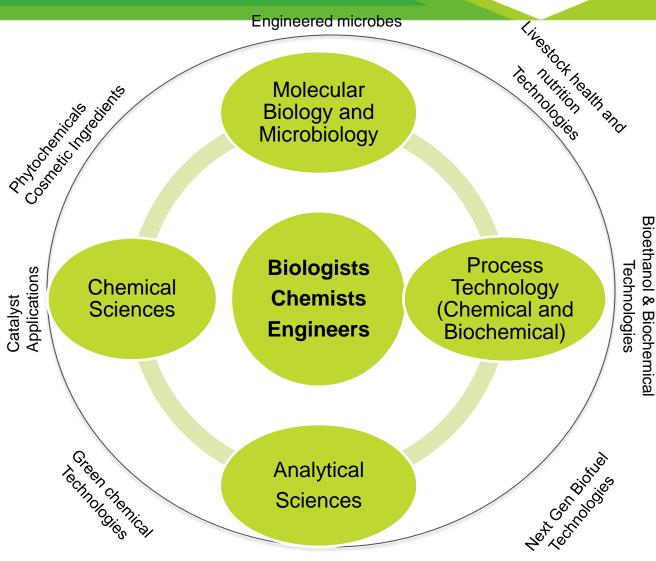
The largest resource base for the BioEthanol Industry with global experience over diverse feedstock

The Innovation Center

- US\$ 25+ Million investment
 - 80,000 sq ft of Labs, Pilot Plants, and Offices
- 115 technologists and growing
 - 30 PhDs, 80 Masters
- 4 Technology COEs
 - Biology, Chemistry, Engineering
- 16 Well Equipped Labs
- ISO-9001-2008 Analytical Lab
- Pilot Plants
 - 1 tpd Cellulosic Ethanol pilot plant

Bench and Pilot scale facilities enable validation of scientific assumptions and rapid commercialization

Praj Matrix – Infrastructure & Capabilities


Centers of Excellence

• Praj-Matrix employs a Centre of Excellence (COE) model as its operating mechanism.

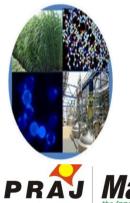
 Each of the four COEs brings a particular technology specialization to the fore.

• Technology programs utilize resources from various COEs at any given time.

Novel Analytical methods

Our Focus – BioFuels, BioChemicals, Environment, Health & Wellness

Praj Matrix : Expertise


Agri-Feedstock Expertise

- Compositional database of over 2000 samples from different countries
- Proteins Typing
- Compositions of wet grains, solubles and DDGS along with variances
- Effect of unit processes on composition

Applied Microbiology Expertise

- Knowledge base on Fermentation Technologies using various Micro-Organisms
- Yeast Collection of over 100 industrial and feed cultures Select Bacterial Strains collection
- Growth / Fermentation kinetics
- Yeast derivative products and processes

Bio Process Expertise

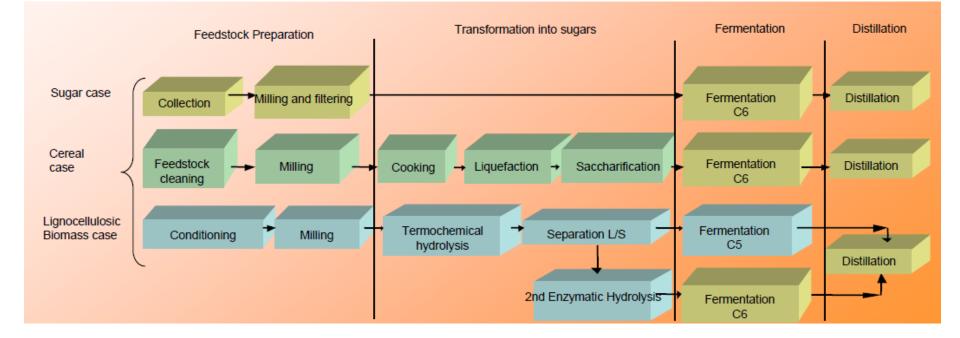
- Fermentation Process development using yeast, bacteria and Fungi
- Expertise in Process Modeling, Simulation
- Enzyme applications for processing Feedstocks
- Development of downstream process for product recovery and purification
- Heat and Energy Integration with Effluent Management expertise

Why Cellulosic Ethanol? : The Indian Context

- India's oil import > 80%
 - ~ 3 million barrels per day
- India's annual oil import bill ~ \$100 bn
 - Energy security at stake
- •Abundant availability of Lignocellulosic feedstock (165 M MT)
 - Sugar Cane Bagasse, Corn Cob and Stover, Rice/Wheat Straw
- Avoids Food versus Fuel Debate
- Reduced GHG Emissions

Cellulosic ethanol is a potential solution to India's transportation fuel needs

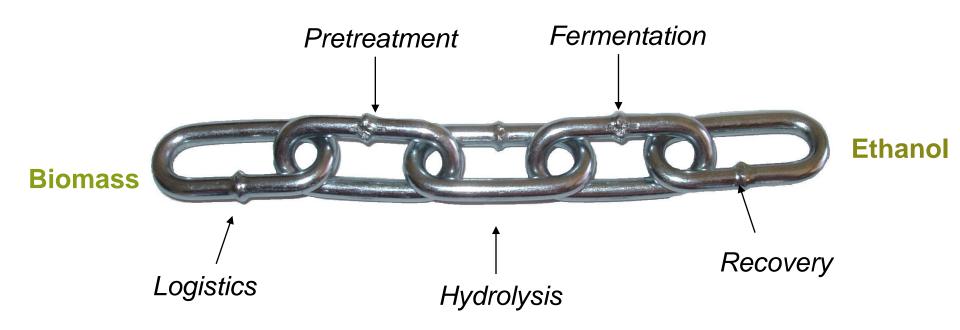
PRA



Cellulosic Ethanol : Challenges

www.praj.net

LC Ethanol : Complexity



Cellulosic ethanol technology : Most difficult to master

PRĂ

LC Ethanol : Processing Chain

PRAJ

LC Ethanol : Challenges

- Feedstock
- Opex
- Capex
- Blending mandates

Feed stock

- Biomass residues :
 - Corn stover (stem, leaves and cobs):
 1-3 dry MT/acre
 Life cycle CO2 emissions : 5 kg CO2/mm btu
 - Bagasse : 8-9 dry MT/acre
- Energy crops :
 - Arundo donax :
 15 dry MT/acre
 Life cycle CO2 emissions : 13 kg CO2/mm btu

Napier grass
 14-18 dry MT/acre
 Life cycle CO2 emissions : 19 kg CO2/mm btu

PRÃ

All biomass is not created equal! Structural and compositional differences exist

www.praj.net

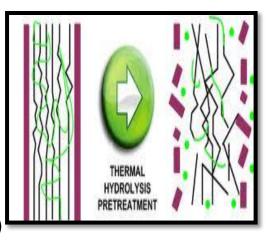
Feed Stock : Critical Issues

- Feed vs Fuel
- Land Productivity
- Feedstock Supply Chain
- Security and Pricing
- Material Handling,
 - Storage and Transport
- Sustainability Considerations

PRA

Societal and Governmental Support will be very important

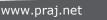
Pre treatment and hydrolysis


- Deconstruction of biomass to individual sugars
- Acid (strong/dilute) + Enzyme : highly efficient (DSM, Praj, Abengoa)

Moderate on opex, High on capex

- Alkali +Enzyme : Moderately efficient (Dupont) High on opex, moderate on capex
- Steam explosion +Enzyme : Moderately efficient (Chemtex)

High on opex, moderate on capex


• Separate C5/C6 fermentation

- ➢ Need for S/L separation
- Non availability of efficient yeast (wild strains) for consuming C5 sugars in presence of inhibitors

Co-fermentation

- ➢ GMO yeasts (Terranol, Fermentis, DSM, Taurus. GTA)
- Efficiency in presence of inhibitors is a challenge

- Need to develop efficient co fermenting yeast
- Need to overcome regulatory hurdles for GMO

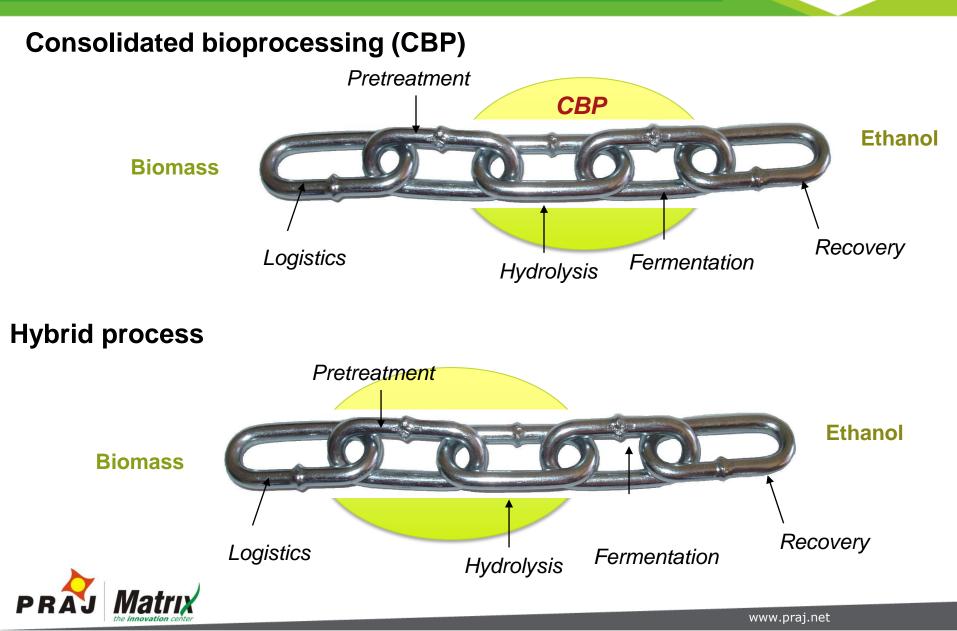
Fermentation

- Separate C5/C6 fermentation
- ➤ Need for S/L separation
- Non availability of efficient yeast (wild strains) for consuming C5 sugars in presence of inhibitors

Co-fermentation

- GMO yeasts (Terranol, Fermentis, DSM, Taurus. GTA)
- Efficiency in presence of inhibitors is a challenge

- Low titres (< 5%)
- Need to develop efficient co fermenting yeast
- Need to overcome regulatory hurdles for GMO


Players	Yield	Conversion Cost	Сарех
	(gal/MT)	(\$/gal)	(\$/gal)
Zeachem	135	1.00	8.0
Beta Renewables	80	0.80	5.6
DuPont	90	1.00	6.66
Clariant	70	0.90	5.0
POET DSM	90	1.12	10.0
Mascoma	83	0.89	9.5
Praj Ind	75-85	0.81	5-7

Source- Daily Biofuels Digest newsletter January 3, 2013

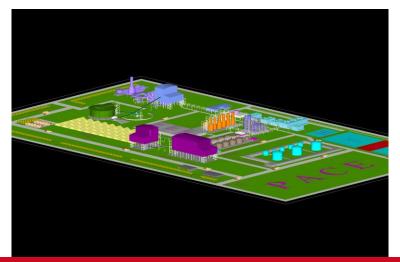
Processing Chain : Opportunities

Praj Advanced Cellulosic Ethanol (PACE) Technology : Journey to the demonstration plant

PACE: Journey

Demo Plant -Operation Demo Plant Design and **Erection** Pilot Plant Trials **Pilot Plant Erection Pilot Plant Design** and Engg **Bench Scale** Experiments **Bench Scale Facilities** 2013 2014 2005 2006 2007 2011 2012 2008 2009 2010 Matrix PRAJ

www.praj.net


- Best in class Ethanol Yield
- □ Low capex and opex
- Economic feasibility from 100 TPD to 500 TPD of dry feed
- Highly Energy Integrated Proprietary Low Energy Technology
- □ Effluent Management Zero Liquid Discharge (ZLD) targeted
- □ In house Design, Engineering and Fabrication
- □ IP Status: 1 patent granted, 5 filed, Several additional applications in process

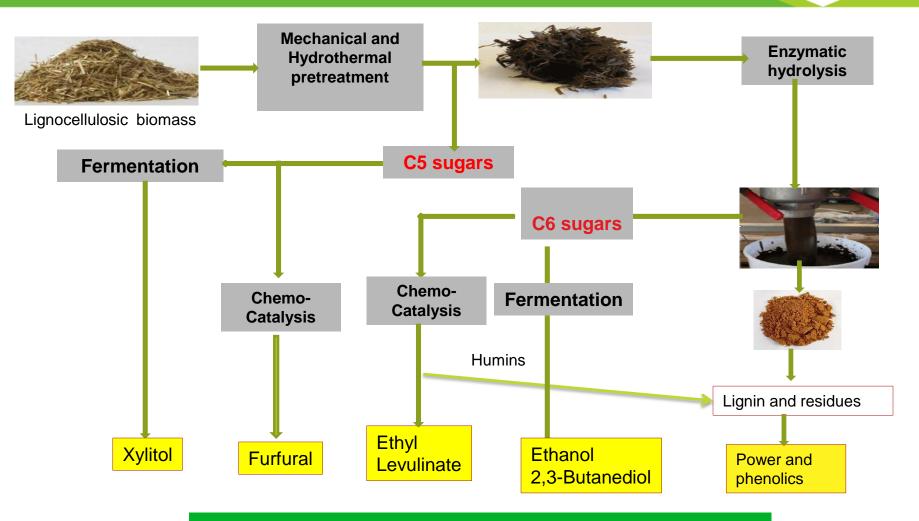
PACE technology backed up by scale-up experience and expertise of 30 years

Demonstration Plant: Feedstock, Capacity, Location, Status

- Feedstock
 - Designed to handle multiple feedstock
 - Sugarcane Bagasse/Trash, Corn Cob/Stover,
- Capacity: 100 metric ton per day (dry basis)
 - Ethanol Production: 25,000 30,000 liters per day
- □ Location: At a Sugar Mill near Pune, India
 - Proximity to Praj Matrix
- Status: Engineering package ready, Permitting in-progress
- □ Target commissioning by 2nd half 2014

PR

Comprehensive evaluation conducted to chose suitable Capacity and Location


- Demonstrate scale-up of the various unit operations
- Demonstrate suitability and reliability of equipment
- Demonstrate repeatability and reproduceability at larger scale
- Demonstrate energy integration
- Demonstrate effluent treatment, recycle and reuse (ZLD)
- Test multiple feed stocks
- Demonstrate Targeted conversion cost of Agro-residues to Ethanol
- Establish basic Cellulosic BioRefinery Concept

Critical Objectives are to Demonstrate and Validate Engineering Scale-Up and Targeted Conversion Cost

What next?

"Praj" Biorefinery : Bolt on to "PACE" plant

Collaboration Models

Input		Collaboration	Outp	ut		
Praj	Partner	Model	Praj	Partner		
 Capabilities Facilities Cost 	 Technology Cost / Finance / 	Joint Development	Technical	Technical Knowledge		
 Dev Finance Background IP/ Knowhow 	 IP Customer Insight 	Partner Spends Praj Spends	Knowledge Early Commercialization 	 Accelerated Development Early 		
Public / Private R&D (SMEs, MNCs, Start Ups)		 Exclusive Rights Non-Exclusive Rights Preferred Supplier 	 Commercialization Lower Devt. Cost Exclusive/ Non exclusive Rights 			
Facilities	Basic TechnologyIP	In-Kind Venture Capital	 License Income Technology Fees Sweat Equity in Mother Company 	 Channel for Commercialization License Income Technology Fees 		
		Praj Spends Praj Develops				
Universities, Research Institutions, Government Agencies, Private Institutions, MNCs						

Referred and the second and the seco

Thanks for your patience

Contact : pramodkumbhar@praj.net

