



### **Short rotation woody crops for bioenergy** a financial, energetic and environmental perspective

#### **Dr. Ouafik EL KASMIOUI**

SAHYOG mini-symposium

Utrecht - October 29, 2013



### Who are we? Research Group of Plant & Vegetation Ecology

- Staff of 45 persons gender ratio of 1/1
- 3 FT professors, over 20 Ph.D.'s, 14 post-docs
- 1/3 non-Belgian 12 different nationalities
- 10 FT researchers: renewable (bio-)energy
- Different disciplines (biology, engineering, economics, physics,...)



Universiteit Antwerpen



• Increasing global energy consumption

• Increasing atmospheric CO<sub>2</sub> concentration

• Increasing dependency on imported fuels



### Bioenergy as a (partial) solution

- Most important and most versatile renewable energy source
- Decreases  $CO_2$  through the substitution of fossil fuels
- Increases the use of indigenous energy sources
- High potential for energy crops, in particular short rotation woody crops





### Definition of SRWC

Short Rotation Woody Crops (SRWC):

a culture of <u>fast-growing woody crops</u>, such as poplar and willow, where the above-ground biomass is <u>periodically</u> and entirely <u>harvested</u>

Periodically:

maximum 8 years after plantation establishment or after the previous harvest (in many cases: between 2 and 5 year)



Short rotation woody crops for bioenergy





- 1. Do SRWC decrease the greenhouse gases (GHG) in the atmosphere?
- 2. What is the energetic efficiency and economic profitability of SRWC?
- 3. What is the global warming contribution of SRWC?





POPFULL



- 1. Complete balance of most important greenhouse gas emissions ( $CO_2$ ,  $CH_4$ ,  $N_2O$ ,  $H_2O$  and  $O_3$ ) using state-of-the-art measurement techniques
- 2. Full economic and energy balance, incl. overall energy efficiency ( $E_{output}/E_{input}$ )
- 3. Full life cycle assessment (LCA) of global warming contribution of SRC

# 6

### POPFULL



#### Operational SRWC plantation of 18.4 ha

- Planted early April 2010 (14.5 ha)
- Planting density: 8000 plants ha-1
  - 12 poplar clones/genotypes
  - 3 willow clones/genotypes
- No fertilization, no irrigation
- First harvest: 2-3 February 2012
  - Yield (measured): 4 odt ha<sup>-1</sup> y<sup>-1</sup>
- Second harvest: February 2014
  - Yield (estimated): 10 odt ha<sup>-1</sup> y<sup>-1</sup>







9





Universiteit Antwerpen

Njakou Djomo et al., 2013 - Applied Energy





Gasification is more efficient than combustion



Njakou Djomo et al., 2013 - Applied Energy

#### • Advantages

- SRWC saves fossil resources (i.e. ER> 0)
- SRWC has GHG emission reduction potential
- Disadvantages
  - requires land  $\rightarrow$  impacts from land use change
  - water footprint & pollution not known
  - biodiversity might be reduced
- Limited detailed LCA studies on SRWCs for bioenergy based on 'field' data



### Financial analysis of SRWCs

Production costs of delivered wood chips

- large variation due to:
  - regional differences in costs of labor and inputs
  - assumptions regarding the cost items included
- increasing fossil fuel prices improve competitiveness



El Kasmioui & Ceulemans, 2012 – Biomass & Bioenergy



## Financial analysis of POPFULL - POPFINUA



# Simulations from POPFINUA model:

- Farmer's scenario:
  - Break-even after 21 years

- Investor's scenario:
  - No break-even reached within assumed lifetime

El Kasmioui & Ceulemans, 2013 – Bioenergy Research

## Financial analysis of POPFULL - POPFINUA

Impact of harvesting option:

- Preference for small scale harvesters
- Advantages:
  - Lower charges
  - Lower fuel consumption
  - Smaller impact on the soil
  - Higher usability (wet soil)
- Disadvantage:
  - High transportation costs (not available in BENELUX)



**Farmer's scenario** 

El Kasmioui & Ceulemans, 2013 - Bioenergy Research



### General conclusions

• Currently, SRWCs are only financially feasible with government support in Flanders (Belgium)

Positive or negative ??

 SRWCs save fossil resources (i.e. ER > 0) and have a GHG emission reduction potential





# 6

### **Research cooperation**

- ✓ Interest in & research on short rotation woody crops for bio-energy production (30 years experience with SRWC)
- Ample international recognition, large number of international publications
- ✓ Recently larger-scale operational SRWC plantation in relation with private SME (POPFULL)
- Increasing focus on techno-economic feasibility and life cycle assessments of bioenergy options



### Thank you for your attention!









