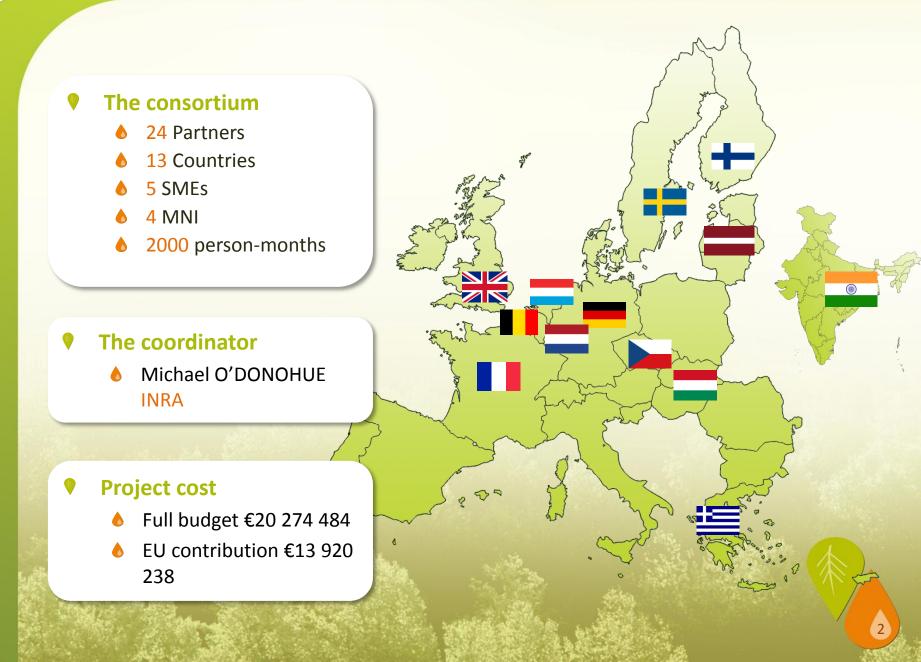


http://www.biocore-europe.org

biocore

BIO-COMMODITY REFINING

Project Coordinator: Michael J. O'DONOHUE Scientific and deputy division manager INRA Project PI from India: Dr Alok Adholeya, TERI



P7 GRANT AGREEMENT N° 241566

Sbiocore

A 4-YEAR EU PROJECT

Collaborating Institutes

- Institut National de la Recherche Agronomique, France
- Valtion teknillinen tutkimuskeskus, Finland
- Energy research, Centre of the Netherlands, The Netherlands
- Compagnie Industrielle de la Matière Végétale, France
- Chimar Hellas, Greece
- ArkemaNTUAInstitute for Energy and Environmental Research Heidelberg, Germany
- Katholieke Universiteit Leuven, Belgium
- Syra, France

core

- ISYNPO, akciová společnost, Czech Republic
- WUR-A&F, The Netherlands

- Chalmer's University of Technology, Sweden
- Latvian State Institute of Wood Chemistry, Latvia
- INRA Transfert, France
- The Energy and Resources Institute (TERI), India
- Oy Keskuslaboratorio -Centrallaboratorium Ab, Finland
- CAPAX environmental services, Belgium
- Royal DSM N.V.The Netherlands
- nova-Institut Gmb, Germany
- Institut f
 ür Umweltstudien -Weibel & Ness GmbH,Germany
- Huntsman, Belgium
- World-wide Fund for nature, Scotland/India

BIOCORE'S CONTEXT

The driving questions and challenges behind biocore

TOUGH CHALLENGES

EU 2020 goals (directive 2009/28/EC)

- 20% renewable energy
- 10% biofuels in the transport sector

The G8 (Aquila, 2009) has announced ambitious 2050 goals

 Reduce GHG emissions by 80 -95% in order to maintain global warming below +2°C

SOLUTIONS?

Possible options

- A massive increase in biofuels
- Vast improvements in energy efficiency
- A move towards a zero carbon transport network
- A massive increase in R&D and PPP
- A fast transition towards a bio-based economy

LIVING WITH FINITE RESOURCES

World biomass resources are abundant, but limited

- Approx 1400 Mha arable land¹
- A further 70 138 Mha¹ could become available
 - 200-390 Mt extra grain (rice or wheat)² or 10-15% increase
- 3-10 Gt³ cereal residues produced annually
- Roundwood production 2 Gt

Food must always be a priority

- b 9 billion to feed in 2050
- Biorefining must obey the maxim 'Food and Fuel' not 'Food or Fuel'
- Better to use lignocellulosic biomass

¹ FAO figures

- ² Assuming approx 2.8 t/ha (average); EU27= 5.23 t/ha
- ³ Estimate accounts for highly variable data

LEARNING TO USE EVERY DROP

Oil refining is an interesting paradigm

- All oil fractions are valorized
- Non-energetic products generate the highest revenues
- Both fuel and chemicals are produced

Biorefining should use every last 'drop'

- A cellulose to fuel concept is insufficient
- Pentose sugars and lignins must be valorized
- Higher value products must be derived from biomass

TECHNOLOGIES FOR THE BIOECONOMY

Biotechnology wil be a key driver (Suschem report)

- Energy efficiency
- Lowered environmental impact
- High catalytic diversity

Chemistry will continue to play a pivotal role

- Proven technologies and processes
- Cleaner reactions inspired by REACH and principles of green chemistry

- Integrated processes using both biotechnology and chemistry will become frequent
 - Smart integration will be critical for efficient biorefinery processes

Sbiocore

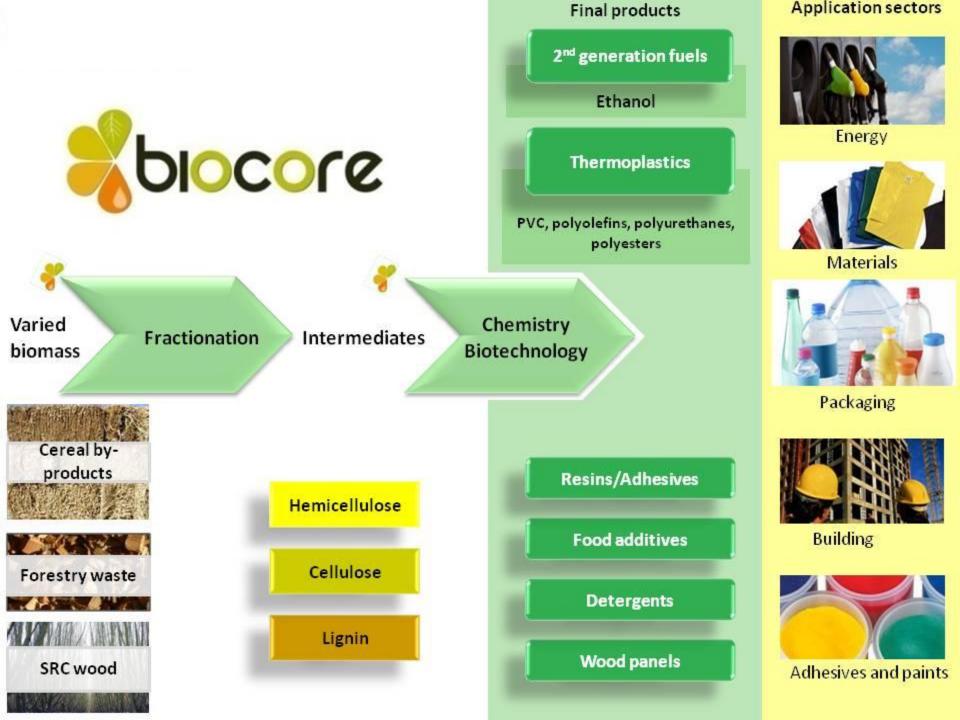
BIOREFINERIES, MAN AND HIS ENVIRONMENT

Biorefineries must be sustainable and produce new or renewed industrial activity in Europe and create new opportunity in India

- Regional approach with medium scale industrial units
- Links to existing industrial activities (e.g. sugar refineries and paper mills)
- Biorefining should be a new driver for agriculture

Biorefineries must be robust

- Various feedstocks
 - allowing for different geographical locations
 - allowing for seasonality effects



BIOCORE'S AIMS AND STRUCTURE

Expected results and the way to achieve them

• KEY FEATURES OF BIOCORE

Take home messages about the project

AVOIDING COMPETITION WITH FOOD SUPPLY

A multi-feedstock concept

- Cereal crop residues
 - Abundant (3-5 Gt produced per annum worldwide)
 - 100 -600 Mt¹ in India
 - on-field burning still common practice
 - Approx 23% is actually available
- Forest products

Hardwood products and residues

- Dedicated short rotation coppice
 - Potential for high yield (8-15 t/ha)
 - Use of marginal or polluted land
 - High expectations (up to 140 Mt per year for Europe³)

¹ based on Gadde et al, 2009 and Felby and Bentsen, 2008 ² based on Fischer et al, 2007 and other estimates ³ IEA 2050 scenario

Spiocore

OPTIMIZED EXTRACTION OF BIOMASS COMPONENTS

CIMV Organosolv

- Uses a formic : acetic acid solvant system (generation of peracids)
 - Dissolves lignin and hemicelluloses
- Multi-biomass
 - 🦲 Hardwood
 - SRC woods (with bark)
 - Cereal coproducts
 - Wheat
 - Rice straw
 - Maize cane
 - Dedicated energy crops

- 100 kg/h biomass
- In operation since 2006
 - >50 runs completed

• THREE PLATFORM INTERMEDIATES

Cellulose and glucose

Pentose sugars

15

MAKING IT WORK.....EVERYWHERE

Account for the many issues that will form the framework of biorefinery implementation

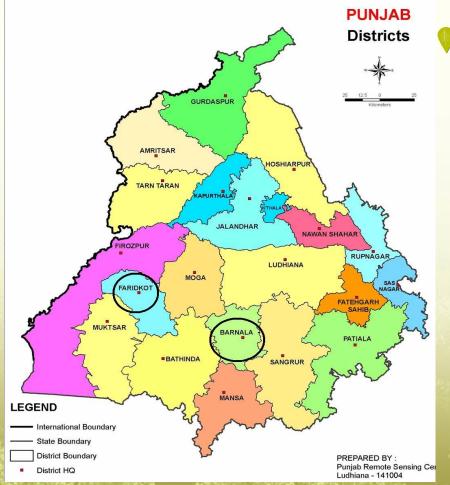
- Environment?
 - Plant, animal and microbial biodiversity
 - Landscape
 - Soil quality
- 6 Economy
 - Employment
 - New markets and products
- Society
 - Rural development
 - New policy

MAIN ACHIEVEMENTS

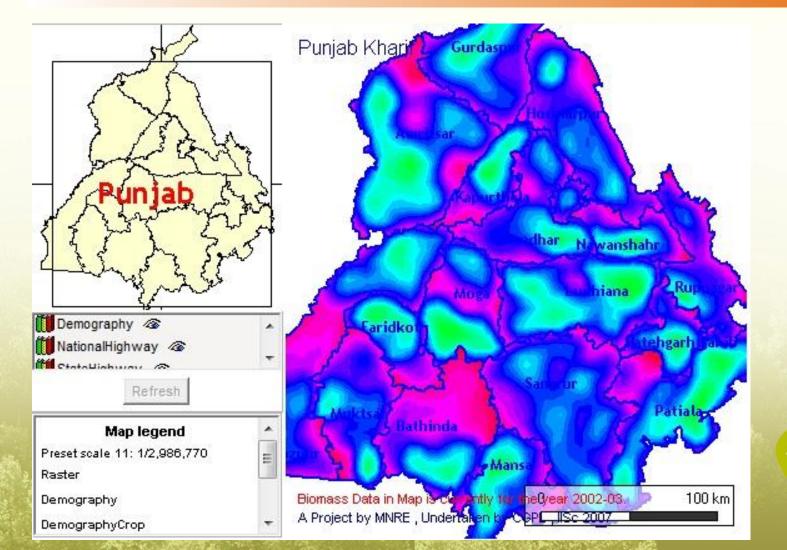
Highlights of the project's progress

BIOMASS SUPPLY

Aggregation of existing data reveals that:


- Europe can readily supply 35 Mt per year of ag-residues
- Up to 50% (17.5 Mt) of potentially harvestable straw residues are located in 3 countries: Germany, France and Ukraine
- Potentially harvestable hardwood in Europe is located in France, Germany, Italy, Poland, and Romania (2.5 to 5.5 Mt per country)
- Certain Indian states can supply both wheat and rice straw
 - Favourable climatic conditions allow for two crops per season
- Central and Eastern Europe present best potential for SRC poplar

INDIAN CASES STUDIES



Locations for biorefinery

- Barnala (Sangrur):
 Planned raw material requirement 500000 ton of DM per annum
- Faridkot : Planned raw material requirement -150000 ton of DM per annum

BIOMASS AVAILABILITY

21

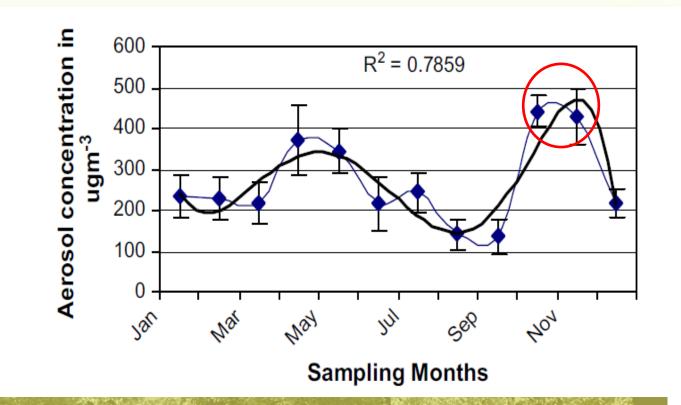
Spiocore

BIOMASS ATLAS OF INDIA , 2003-04 (MNRE, Gol)

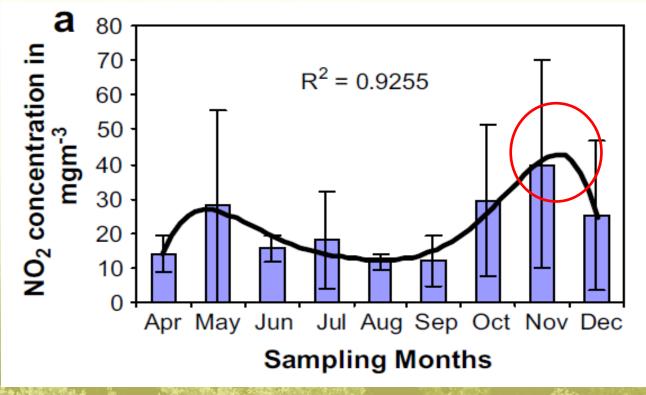
👂 Barnala (Sangrur)

- 29,92,000 tons of agro biomass surplus in Sangrur
- Existing supply chain of small entrepreneurs – Paper industry
- Neighboring districts (Mansa, Ludhiana, Patiala)
 51,63,000 tons of agro
 Biomass Surplus

- Faridkot
 - 913000 tons of agro biomass surplus
 - Large landholdings in Malwa region + Sirhind Canal
 - Neighbouring district-(Firozpur, Bhatinda, Moga)
 - 68,73,000 tons of agro Biomass surplus

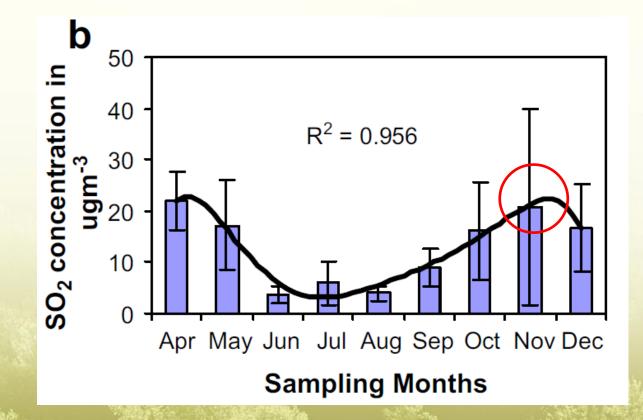

Impact of Bio-refinery

- No direct/indirect change in Land use pattern with/ without LC biorefinery
- Employment to locals
- Decrease in straw burning from 90% to 10% (2025)
- Health benefits due to bio-refinery (reduced straw burning – sent to biorefinery)
- One ton of burned straw yields 3kg of particulate matter, 60kg of CO, 1460kg of CO₂, 199kg of ash, 2 kg SO ₂. – Health issues in post harvesting season. (Gupta et al(2004))
 - Total annual welfare loss in terms of health damages due to air pollution caused by the burning of rice straw in rural Punjab amounts to ₹76 millions. (Kumar & Kumar (2010): CREDI) - Avoided

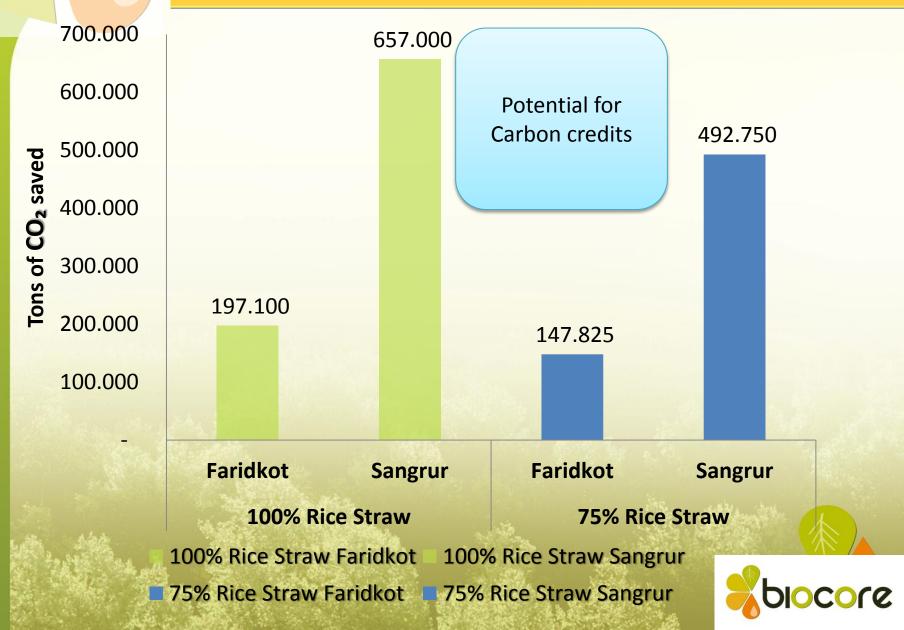


Ostraw burning -Pollution

- Study done in Patiala, S.K. Mittal et al (2009) measured monthly average value of ambient air quality.
- Red circle represents Paddy harvesting season

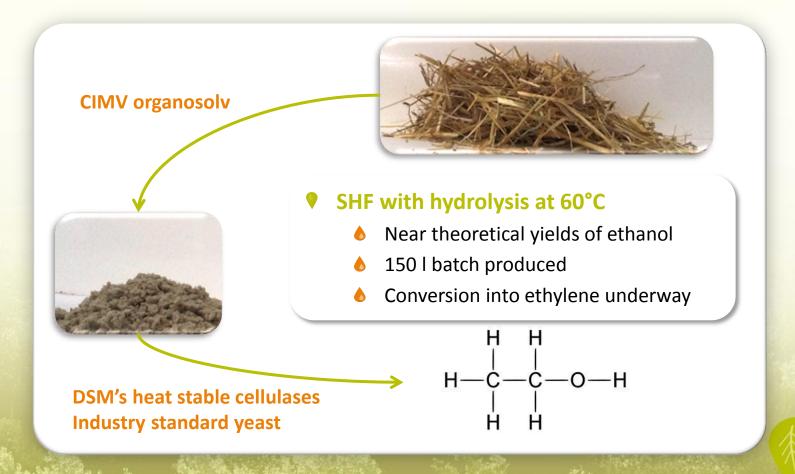

NO₂ concentration*

S.K. Mittal et al. / Atmospheric Environment 43 (2009) 238-244


♥ SO₂

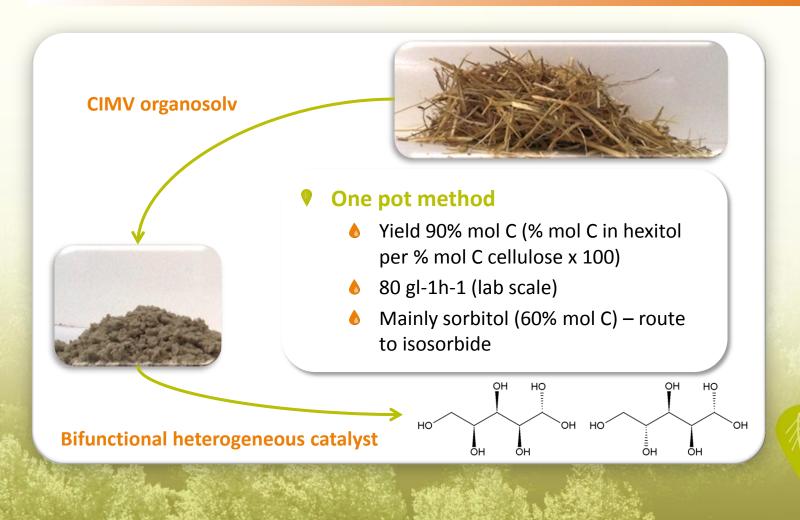
S.K. Mittal et al. / Atmospheric Environment 43 (2009) 238-244

Preventing Emissions from Rice straw burning/ year

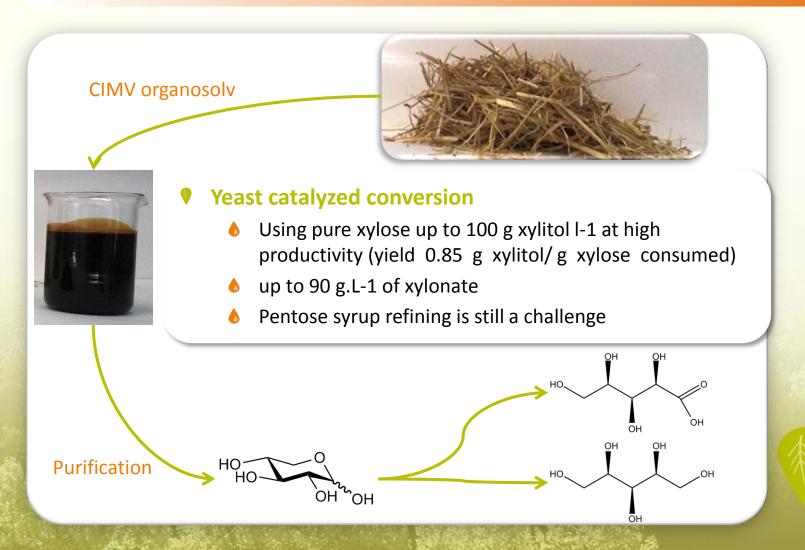

MULTI-FEEDSTOCK REFINING

CIMV organosolv processing can handle several feedstocks

- Rice straw no process alterations
- Birchwood and SRC poplar modification of the residence time and formate:acetate ratio
 - Feasible at industrial scale using a batch mode or by deploying two process lines
 - Bark is not a problem with SRC poplar
 - Hardwood/softwood (90:10) mixture can be processed
- A promising innovation that will allow the processing of softwood has been identified



PRODUCTION OF BIOETHANOL



DIRECT CATALYTIC CONVERSION OF STRAW CELLULOSE INTO POLYOLS

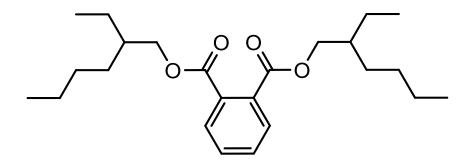
BIOTECH PRODUCTION OF XYLITOL AND XYLONATE

Spiocore

OEVELOPMENT OF LIGNIN-BASED POLYMERS

Lignin reinforcement of thermoplastic elastomer

- Simple fabrication method
- Increased tensile strength and toughness, with surface hardness being significantly increased
- Application for electrical appliances (e.g. cables)



NEW BIO-BASED PLASTICIZERS

Di-2-ethylhexyl phthalate (DEHP)

• A bio-based plasticizer for PVC

• Using DEHP, PVC is 30% more flexible

CONCLUSIONS

CONCLUSIONS

BIOCORE

- A concept that addresses a number of grand challenges
- Highly encouraging progress with several highlights after 18 months
- Potential for near-mature industrial technologies in 2014

Thank you!

Stakeholders meeting at Amritsar, India

Acknowledgements to: all BIOCORE partners

the EU Commission for funding