Current biotechnological interventions for residue utilization from Indian perspective

Ashok Pandey Centre for Biofuels National Institute for Interdisciplinary Science and Technology, CSIR Trivandrum, India

Indo-EU Second Stakeholder Meeting- Biotechnological interventions in Biomass and Bio-waste availability for sustainable bio-economy TERI, India Habitat Centre, New Delhi November 7, 2012

Power Generation Technologies Wind Power Small Hydro Biomass Power Biomass Cogeneration Biomass Gasifiers Energy from Wastes

Solar Energy Technologies

Solar Photo-voltaics Solar Thermal Stand-alone Wind Energy and Hybrid Systems Rural Energy Technologies - Biogas

New Technologies Chemical Sources of Energy Hydrogen Energy Geothermal Energy Alternative Fuels for Transportation - Biofuels Tidal Energy

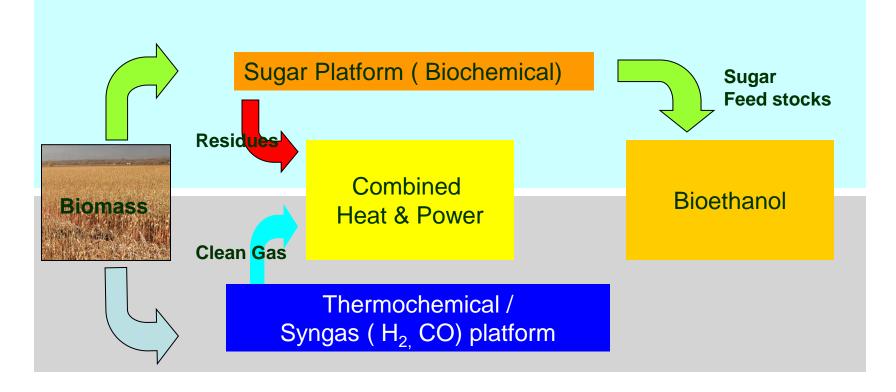
Power Generation Technologies Wind Power Small Hydro Biomass Power Biomass Cogeneration Biomass Gasifiers Energy from Wastes

Solar Energy Technologies

Solar Photovoltaics Solar Thermal Stand-alone Wind Energy and Hybrid Systems Rural Energy Technologies Biogas Improved Cookstoves

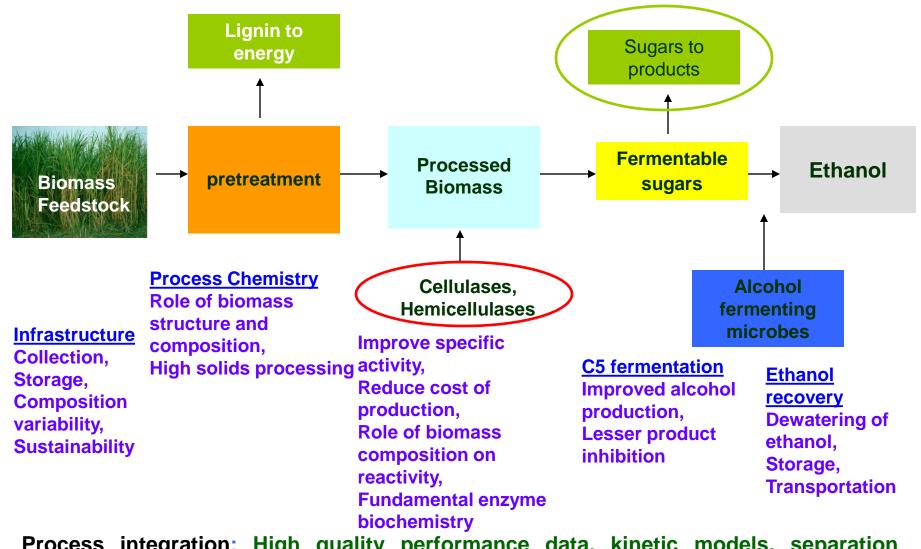
New Technologies Chemical Sources of Energy Hydrogen Energy Geothermal Energy Alternative Fuels for Transportation - Biofuels Tidal Energy

- -1st Generation of biofuels: ethanol from sugar, corn, molasses, starchy biomass, etc
- 2nd Generation of biofuels: biodiesel from vegetable oils and bioethanol from lignocellulosic biomass
- 3rd Generation of biofuels: algal biofuels
- 4th Generation of biofuels: biohydrogen


-1st Generation of biofuels: ethanol from sugar, corn, molasses, starchy biomass, etc

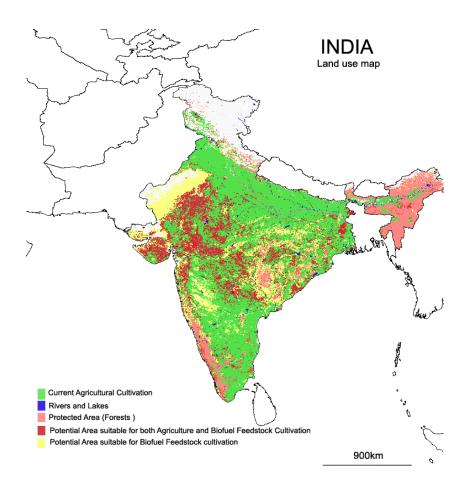
2nd Generation of biofuels: bioethanol

- 3rd Generation of biofuels: algal biofuels
- 4th Generation of biofuels: biohydrogen


The concept and approach

The conceptual biorefinery is built on two platforms

- 1. Sugar Platform which uses biochemical conversion of biomass to fermentable sugars, followed by subsequent fermentation to yield useful products.
- 2. Thermo-chemical platform where biomass is gasified using thermo-chemical reactions to generate fuels and the byproducts are utilized.



Process integration: High quality performance data, kinetic models, separation requirements, understanding key process interactions

Why bioethanol from agro-residues?

~51 % of the land surface in India is cultivated and the cultivated lands are mostly rain-fed !!!!

- India do not have surplus vegetable oil and biodiesel production should depend on imported oil !
- The nation does not have land resources to support the cultivation of oil crops or any energy crops at levels which can meet the production demand !
- India generates ~600 MMT of agricultural residues annually and this could be a potential feedstock for fuel production.

Sukumaran & Pandey 2010, India Country report, In: Eisentraut A (ed), Potential for sustainable production of 2nd generation biofuels, IEA 2010

Feedstocks for bioethanol production

Availability of feedstocks in India?

Feedstock for bioethanol production

Availability of feedstocks in India?

For the purpose of understanding the feasibility and sustainability of producing biofuels from biomass in India, a clear understanding of the production, current uses and excess availability ('surplus') of biomass was needed.

Further, the storage, transportation and procurement practices of such biomass resources also need to be understood.

NIIST-TIFAC study on the sustainable availability of potent biomass resources for bioethanol production in India

The scope of study

- Identification of top biomass resources available in India with statewise/geographical distribution.
- Assessment of the total quantity of biomass generation (state-wise and national)
- Assessment of current consumption of the identified biomass resources and usage pattern (state-wise and national).
- Assessment of current practices in storage and transport, if existing for agro-residues/biomass resources.

NIIST-TIFAC study on the sustainable availability of potent biomass resources for bioethanol production in India

The scope of study (cont...)

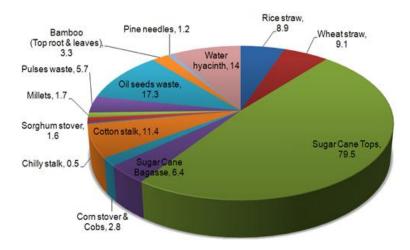
- Generation of data on feasibility of collecting the feedstock other than agro-residues (inclusive of forest biomass resources such as bamboo and pine needles, and aquatic biomass such as water hyacinth). Estimates on the cost of collection, drying (if applicable as in the case of water hyacinth), storage and transport have to be prepared.
- Cost assessment for the biomass when procured at small-scale and at large-scale.

NIIST-TIFAC study on the sustainable availability of potent biomass resources for bioethanol production in India

The scope of study (cont...)

- Identification of major locations in the country with highest concentration of the 5-6 feedstocks.
- Sources of procurement of biomass and agro-residues.

NIIST study on the sustainable availability of potent biomass resources for bioethanol production in India


□ Primary data sources

□ Secondary data sources

□ National scale

dentification of feedstock to work-on

Annual surplus availability of biomass residues in India (MMT)

More than 90% of the cereal crop residues are used domestically !

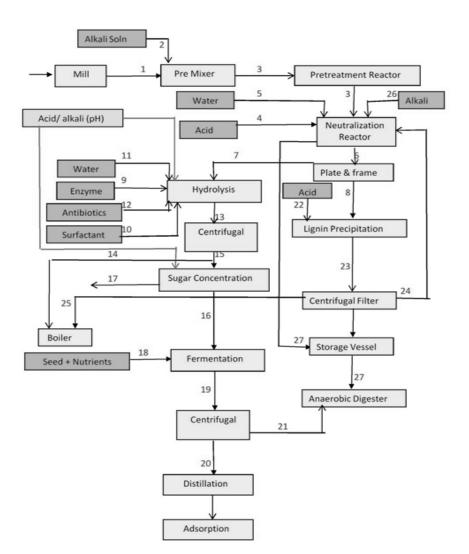
 Surplus residues are sufficient to support projected demand for 2020 even with the most pessimistic conversion figures (Projected Demand for 2017 at 10% Blending = 2.2 Billion L)

Agro residue	Annual Availability (MMT)	Cellulose (%)	Alcohol - Theoretical Max (Billion L)	Alcohol - Estimated @35% efficiency (Billion L)
Rice Straw	8.9	33	2.11	0.737
Wheat Straw*	9.1	33	2.15	0.754
Bagasse	6.4	40	1.84	0.643
Corn Stover*	1.1	35	0.28	0.097
Sugar Cane Tops	79.5	35	19.96	6.985
Chili PHR	0.5	47	0.17	0.059
Cotton PHR	11.4	31	2.53	0.887
Bamboo	3.3	42	0.99	0.348
TOTAL			30.03	10.51

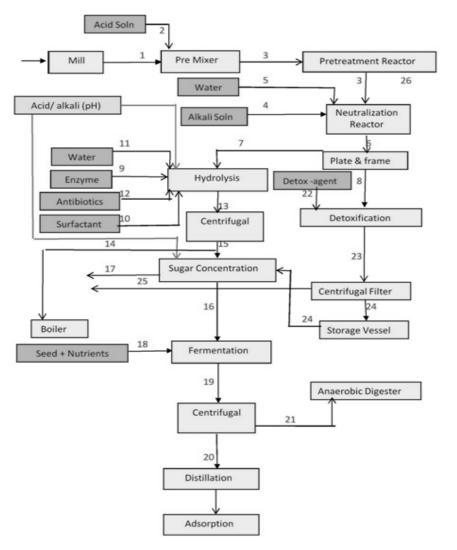
STUDY ON
BVAILABILITY OF INDIAN BIOMASS
RESOURCES FOR EXPLOITATIONImage: State of the state o

NIIST-TIFAC survey report, 2009

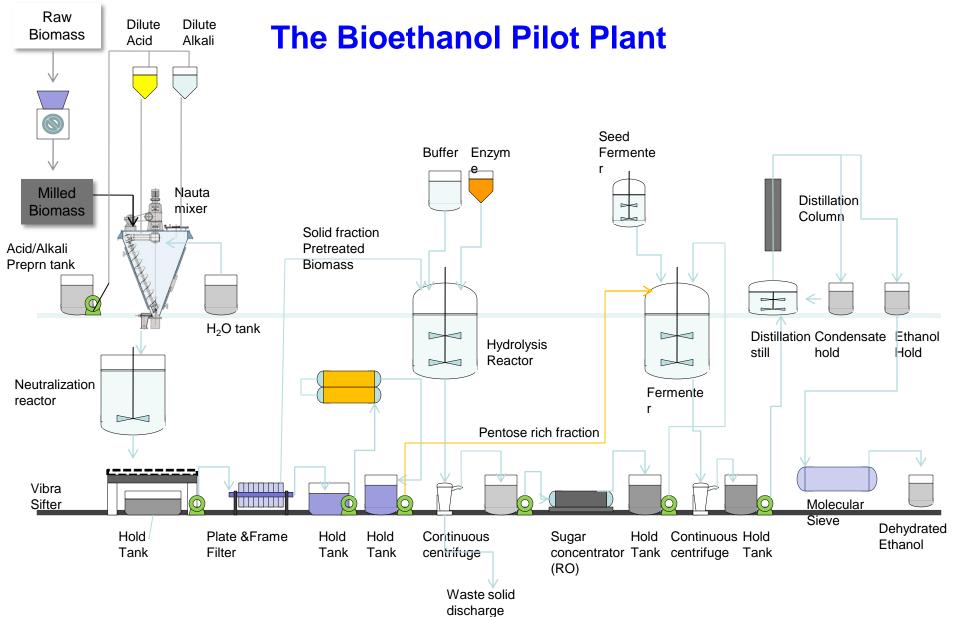
1


Theoretical estimates of LC bioethanol in India

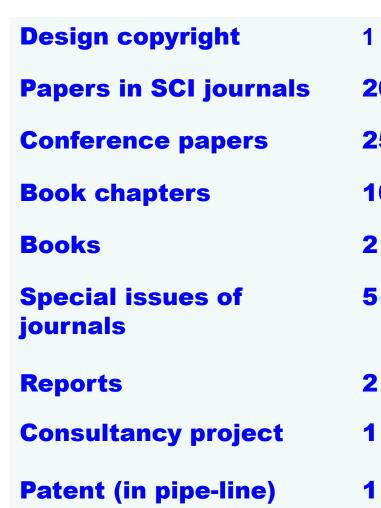
With 10% of the major feedstocks (wheat straw, rice straw and SCB) being used for the production, and at 75% theoretical yield, the projected ethanol yield will be 5.4 billion liters annually.


Lab to Plant: Design of process-flows and volumes

Alkali pretreatment scheme


Acid pretreatment scheme

Centre for Biofuels


Pilot plant



Our partners, collaborators and facilitators

सत्यमेव जयते Department of Science & Technology Government of India

CSIR

Naturol Bioenergy, Hyderabad

Godavari Biorefinery, Sameerwadi

Kerala State Bamboo Corporation

MAPs Enzymes Pvt Ltd

CSIR-NCL , Pune; CSIR-IICT, Hyderabad; UBP, France; EPFL, Switzerland; HTBS, Pune; Scigenics India Pvt Ltd, Chennai

Acknowledgements

Dr Priyangshu M Sarma and the Oraganizers TIFAC, New Delhi

Dr Rajeev K Sukumaran, Dr K Madhavan Nampoothiri, Dr P Binod, Dr R Sindhu, Vikram Surender, M Kiran Kumar, Vani Sankar, Dr Reeta Rani Singhania, KU Janu, M Kuttiraja, Preeti Varghese, Sandhya Varier, KP Rajasree, Abraham Mathew, Aravind Madhavan, Lalitha Devi G, Gincy Marina Mathew, Mr PN Sivankutty Nair, Mr Prakash KM

Questions?

Contact: pandey@niist.res.in

