

PROJECT INVENTORIES and SHORT-TERM EXCHANGE PROGRAM (INDIA)

Dr. S. VENKATA MOHAN Bio engineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology, Hyderabad, India-500 007

Short-Term Exchange Program (STE)

- CSIR-IICT was involved in organizing STE program for junior experts in the field of biomass and biowaste conversion and bioenergy production.
- The objective of STE is to strengthen the inter-regional exchange and to enhance the networking and exchange of young talents in Europe and India in the field of biomass and biowaste.

EUROPE	INDIA
International Bureau of the Federal Ministry of Education and Research at the Project Management Agency c/o German Aerospace Center (DLR)	CSIR - Indian Institute of Chemical Technology

- A call addressing the junior experts on objective of STE was proposed and published in March 2013 on the website.
- The Young European researchers were invited to visit renowned research facilities in INDIA.
- The hosting institutes for EU researchers included

Hosting Institute	Place
TERI	New Delhi
CSIR-IICT	Hyderabad
GBPUAT	Pantnagar
JNU	New Delhi

Researchers from different parts of EU were selected for STE in India

Name of the researcher	University/Institute
Neeta Sharma	EU-Coordinator, SAHYOG, ENEA, Italy
Hans Westphal	DFG, Germany
Zsolt Barta	Budapest University of Technology, Hungary
Joe Bennett	University of York, UK
Sebastian Riedel	IPK Fraunhofer Institute, Germany
Carla Ferreira	LNEG, Portugal
Axel Funke	KIT, Germany
Gianpaolo Sabia	ENEA, Italy

Invitation letters

Strengthening networking on biomass research and biowaste conversion-biotechnology for Europe India Integration (SAHYOG)

Short-term Exchange Programme proposal

SAHYOG Contact for Short-term Exchanges

Dörte Merk

International Bureau of the Federal Ministry of Education and Research at the Project Management Agency c/o German Aerospace Center (DLR), Phone: +49 228 3821 1442 Email: Doerte Merk@dlr.de

Dr. S. Venkata Mohan

CSIR - Council for Scientific & Industrial Research - Indian Institute of Chemical Technology (IICT) India, Hyderabad Phone: +91 4027 191664 Email: vmohan s@vahoo.com

SAHYOG Project

The investing global downership and a gold of investigation of exercise, slowership and the state of the second state of the second state of the second state of the second state of the st

The main aim of the project is to actively link leading organizations in the field of The mass and of the predicts to be continued on the predicts of the other of the reason by pregramma and related pregrammas by Indian redicts in the other of the activities conducted within SAMYOG have the objective to contribute to a joint Stategie Reason Agence (SRA) finally leading to a readmap for Indian and European palicy makes and reasonham, patring the Way for a sustainable enversion. Indian cooperation in the field of bipmass prediction and bio-master the sustainable enversion.

SAHYOG-Short-Term-Exchange

SATHYOR'S short's form-Exchange Canneting young reservers is an imported piller for a sustainable and lang-form segmedian. To enhance the networking and exhange of young tarets in advessing junier cupted is published in March sea. The vinces are availed for their subtanding easiemic meands and their innewsitive and enalty ideas in a intervalished assessed in a relative interval and their innewsitive and enalty ideas in a intervalished assessed in a relative in the field of biermas production and biewaste samuels.

Yeing European and Indian researches will be invited to visit ane-unnel research facilities at four respective field of measure. The explositive is a strengthen the inter-regional exchange: Indian researchers will be invited to visit European institutions, European researchers will visit india. The southange is anviaged for unique appendunity to gain first hand insights of the respective research Indiaesen make contests and build not shall be invited.

Eligibility Criteria

Preven excellent command of the English language Agraduate degree with above-average grades April up to as years

Working in one of the following fields of research:

- Siggland production from Ligners Lylesis biomass Decresteries, conversion technologies (pyrolysis, gasification)
- Anaerabic digestion technologies (bioges, biomethane, hydrogen)
- Algas production and conversion systems
- Biomass to chomicals the bigging gay, approach
- Feedsteck production and genetic improvement of plants Sustainability and life cycle, assessment

and Blogy for E

Contact for SAHYOG Short-Term

he Federal

ENEA, Italy Dr. Neeta Sharma

TERI, India Dr. Priyangshu Manab Sarma

India-EU SAHYOG Short-term exchange programme

Letter of Interest

With this letter **organization** states its interest to participate in india-EU SAHYOG Short-Ter Exchange programme organized in the famework of the project SAHYOG (Strengthening Network on Biomess Research and Bio-weste Conversion - Biotechnology for Europe India Integration SAHYOG is supported by the European Commission within the 7th Framework Programme and by the Department of Biotechnology (DBT) of the Indian Ministry of Science and Technology. Dependential is interstead in hosting one of the selected European scientists young researchers for one week with in <u>method</u> 2013. The visit includes a guided boar through leborationes and other relev-facilities, the presentation of respective research projects at your institution, a possibility for i awardee to present his research as well as the chance to exchange ideas. The longanization is actively involved in the following research theme(s) (please mark the relevant field):

- Blackback production from lignocellulasic biomass
- Thermochemical conversion technologies (pyrolysis, gasification)
- Anaerobic digestion technologies (blogas, blomethane, hydrogen)
- Algae production and conversion systems
- Biomass to chemicals the biopedicecy approach Feedstock production and genetic improvement of plants
- Sustainability and life cycle assessment

The selected European scientists/young researchers with expertise/experience in the above mentioned fields can be selected.

Accommodation and travel costs are fully covered by SAHYOG.

Best regards.

POSITION

Place, Date

designed by CSIR-IICT and sent to the participating hosting institutes. Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 (18 Nov-(19 Nov-(20 Nov-(21 Nov-(22 (23Nov-(24 Nov-(25 Nov-(26Nov-(27 Nov-Tue) Wed) Thu) Nov-Mon) Sat) Sun) Mon) Tue) Wed) Fri) Arrival at Present Lab visit Presenta **R & D** Local Transfer Present Progra Presenta Departu **Delhi and** ation by followed tion by Institut ation by tion by tour m to re **JNU** and Transfer TERI by CSIRes Visit In New **GBPUAT** GB followed **IICT** and Delhi PUAT EU to discussion Transfe EU and EU followed Transfer r to Accomm by Local followed odation Delhi present to tour bv ations **Hvderaba** Lab visit by Interacti by EU followed Interact d on Interact by ion session ion interacti session Lab visit session Lab and followed on session field by visit and discussio discussi n on Transfer to Delhi Station New New New **Hyderaba Hydera** New Pantnaga Pantnag New New Delhi Delhi Delhi/Hvd bad/ **Delhi** ar/New Delhi Delhi d r **Delhi** erabad New Delhi

The exchange was envisaged for ten days and the program for STE to be held in India was

•

Visit to TERI

Day One

Interactive Session

Presentation by

European Researchers

Guest Lectures

DAY TWO AT TERI

Visit to TERI Gram/Gwal Pahari

The researchers were taken on a visit

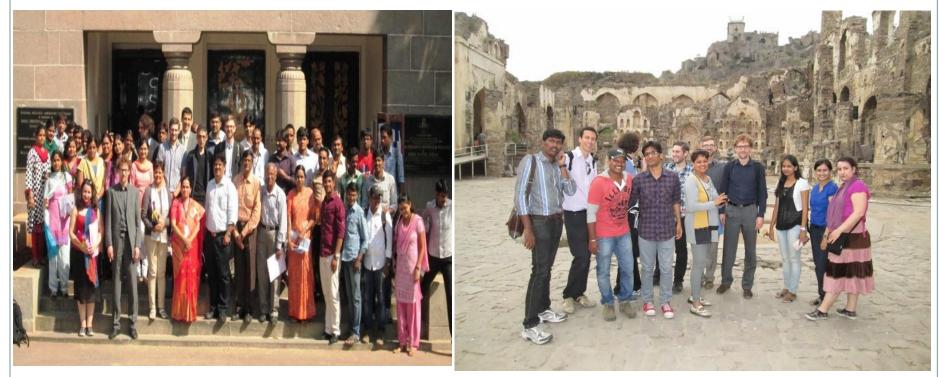
- Biomass Gasifiers system
- Micro propagation technology Park (MTP)
- Tissue culture lab/ poly house visit

 Fermentation Technology Research Center (FTRC) having several ranges of fermenter units (1,000 Lt to 15,000 Lts) and Smart Grid

Visit to CSIR-IICT

Day One

Presentation by European Researchers


Presentation by research scholars from CSIR-IICT

CSIR-IICT

Day Two

Field visit to ICRISAT, Hyderabad

City tour

Visit to GB Pant

Interactive Session

Guest Lectures

University campus visit

Day two At GB Pant

Visit to various facilities

- Vermi compost technology
- Feedstock preparation and conversion technology
- Cattle and poultry farm
- Mushroom research centre
- Crop Research Centre
- Vegetable Research Centre
- Floriculture Research Centre
- Agro-forestry research
 station of the university

Visit to JNU

Presentations by JNU research scholars

Interactive Session

Guest Lectures

Visit to Various Facilities in JNU

- Visit to glasshouse
- Central Instrumentation Facility (CIF) at School of Life Sciences
- Advanced Instrumentation Research Facility (AIRF) at JNU
- Trip to the School of Biotechnology, JNU
- Visit to the fermentation units

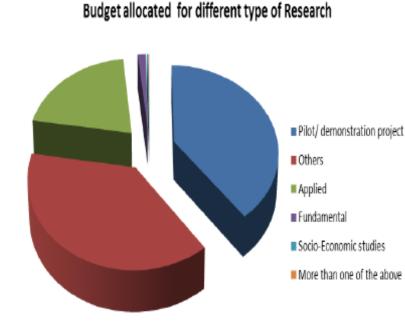
Initiation of Project Inventories

 One of the major challenges for documenting an inventory for projects funded under the theme of SAHYOG from Indian side was the lack of existing databases and thus the exercise of documenting the project inventory was initiated.

 The work of documenting the project inventory was divided to all the Indian partners.

Indian partner Institutes	Project Inventories
CSIR-IICT	South India
JNU	North-West India
Tezpur University	North-East India
GB Pant	North India
ARTI	Central India

The criteria for considering the projects are as follows:

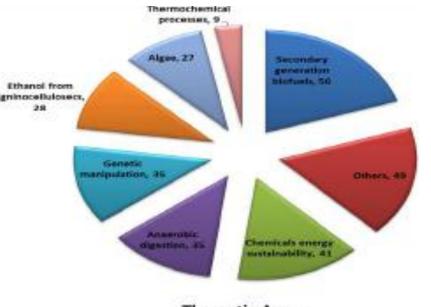

• Minimum funding: 1 million INR (~ Euro16600 as per current conversion rate)

• Time period: The projects for year 2007 onwards (completed and on-going)

Indian project inventory was based in the information available in the National Science
 & Technology Management Information System (NSTMIS) website.

• Apart from this source, the information was collected though correspondence and visits to nodal persons of different central and state ministries, state science and technology websites, state and central forest and agricultural department research institutes and other semi government and industrial funding sources.

Type of Research	Budget allocated (in INR)	Euros (in million)	
Pilot/ demonstration project	8805039650	135.46215	
Others Applied Fundamental	8347727547 4581116616 309464326	128.42658 70.478717 4.7609896	
Socio-Economic studies	538402 <mark>1</mark> 2	0.828311	
More than one of the above	33147920	0.509968 0	
Total Budget	22130336271	340.46671	



Categorization based on thematic areas

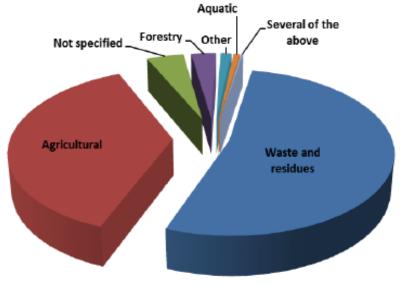
The inventory sheet indicates that the projects can have broadly classified seven broad thematic areas as follows:

- Second generation biofuels
- Chemicals energy sustainability
- Anaerobic digestion
- Genetic manipulation
- Algae
- Ethanol from lignocellulosic and
- Thermochemical processes.

Thematic Area	No. of Projects
Secondary generation biofuels	56
Others	49
Chemicals energy sustainability	41
Anaerobic digestion	35
Genetic manipulation	35
Ethanol from ligninocellulosecs	28
Algae	27
Thermochemical processes	9
Total	280

Thematic Area

 The majority of the project (56) were found to be running under Second generation Biofuel followed by projects working under others category (49) and Chemicals energy sustainability (41).



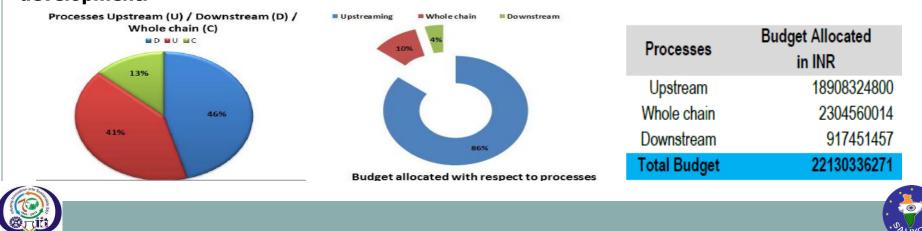
•It could be also inferred that the total amount of funding for the 280 projects in the inventory turns out to be 22130,336,271 INR and that is equivalent to 350 million Euros.

•When classified into the selected thematic areas, it was observed that a major amount of funds have been accounted for anaerobic digestion.

Thematic Area	Total Budget in INR
Anaerobic digestion	11654172366
Others	8616273359
Secondary generation biofuels	1109458427
Ethanol from ligninocellulosecs	230028260
Genetic manipulation	193429804
Algae	166063078.5
Chemicals energy sustainability	131492056
Thermochemical processes	29418920
Total Budget	22130336271

•The second generation biofuels and funding on lignocellulosic ethanol is also significant.

Budget allocated for different biomass sources

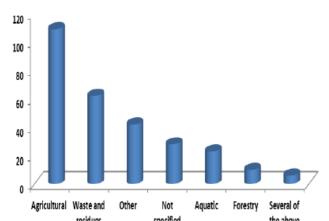

Categorization based on generic processes The projects sanctioned in India related to the current themes can be put into categories based on three processes of Processes No of projects Downstream (D)

- •Downstream (115) and
- Whole chain (37).

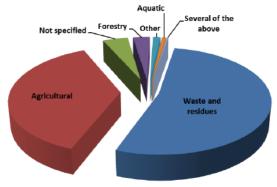
Processes	No of projects		
Downstream (D)	128		
Upstream (U)	<mark>11</mark> 5		
Whole chain (C)	37		
Grand Total	280		

Though the number of projects is higher for downstream processes, the budget of the projects sanctioned under the category of upstream is on the higher site.

• This indicates that major focus in terms of funding is for developing processes and thus can be implied that most of the research on the selected themes are on bench stage or in development.



Categorization by type of biomass


•The majority of the projects identified from Indian side fall in the category of using agricultural

biomass (109), which was then followed by the waste and residue (62) biomass source.

•The inventory also indicates that almost half of the total amount sanctioned for the total projects by various funding agencies are utilized in projects that utilize waste.

residues	specified	the above
Types of Biom	Types of Biomass	
Agricultural		109
Waste and resid	ues	62
Other		42
Not specified		28
Aquatic		23
Forestry		10
Several of the above		6
Grand Total		280

Budget allocated for different biomass sources

Biomass Sources	Total Budget		
Diomass Sources	in INR		
Waste and residues	11707004127		
Agricultural	8328151254		
Not specified	957977016		
Forestry	636057865		
Other	285107274		
Aquatic	163431245		
Several of the	52607490		
above	52007490		
Total Budget	22130336271		

Categorization based on final outcome or product

•It was quite difficult to categorize the projects based on its final product or outcome of the project as this information was not clear either due to lack of full project overview or due to the fact that that achieved objectives/milestones were also not clearly mentioned on the project or source information.

•Therefore the most identified final product after others (135) category were identified project have end product as the liquid fuel (97).

Electrical Power, 2

		Chemicals, 9 Heat, 2
Final Products	No. of Projects	More than one of the above, 9
Other	135	Gas, 23
Liquid Fuels	97	
Gas	23	
More than one of the above	9	Liquid Fuels, 97 Other, 135
Chemicals	9	
Electrical Power	2	
Feed	2	
Heat	2	
Material (e.g. construction)	1	Final Products
Grand Total	280	Tilliproducts

Categorization based on the research focus

•It is observed that significantly low percentage of the total budget was sanctioned for basic and fundamental research.

•This section of the inventory deals with the type of research which was carried out by the Organization or researchers, i.e. fundamental, applied, pilot/ demonstrated or socio-economics studies etc.

•The majority of the project taken up indicates that most of them are working on applied research (167) as compared to research projects working on the fundamental concepts (45).

Budget allocated for different type o	f Research	Type of Research	Budget allocated (in INR)	Euros (in million)	Type of Research	No. of Projects
		Pilot/ demonstration project	8805039650	135.46215	Applied	167
■ Pilot/ den	Pilot/ demonstration project	Others	8347727547	128.42658	Fundamental	45
	Others	Applied	4581116616	70.478717	Pilot/ demonstration project	44
	Applied	Fundamental	309464326	4.7609896	Other	12
	Fundamental	Socio-Economic studies	53840212	0.828311		
	Socio-Economic studies	More than one of the above	33147920	0.509968	More than one of the above	8
	More than one of the above		00147020		Socio-Economic studies	4
		Total Budget	22130336271	0 340.46671	Grand Total	280
						. 1

Projects for Collaboration

 Based on the selection criteria, a total of 90 projects were identified for collaboration from India which mainly depends on the project objective and their role on Biomass enhancement and Biowaste utilization and conversion using biotechnological interventions.
 Reliability scale (1-5)

No. of projects	Reliability scale (1-5)
106	4
58	3

 Based on the selection criteria, a total of 108 projects were considered in "IN" criteria (selected).

Specific outcome from project Inventory

 A total of about 700 projects in the EU and 280 in India have been identified in an inventory of bio-based projects and a total funding of these projects is more than 1.5 billion Euro in the EU and 35 million Euro in India during the period 2007 – 2012.

SAHYOG-Biorefinery

Strategies and Research Recommendations

Strategies

The key strategy to make biorefineries a successful endeavor is

- Bringing together key stakeholders operating in multi-disciplinary partnerships and to accelerate the deployment of developed technologies.
- Identifying the most promising bio-based products can help to improve overall process economics and minimize the overall environmental impact.
- India has an abundance of biomass feedstock and the challenge is not the availability of resources but their efficient use.
- Key stakeholders should participate in regional and national debates on water-resource management

For a succesful Biorefinery Multi-disciplinary partnerships •Value added products Efficient use of resources •Sustainability Involvement of stakeholders

•

٠

•

•

- Plant-based raw materials have the potential to replace
- a large fraction of fossil resources as feedstocks for industrial productions

 Many key players, namely government and farmers, lack a holistic understanding of the impact of their actions on the overall value chain and this gap needs bridging.

 India's policy-makers need to strengthen environmental policies while allowing economic growth to still flourish.

• A business framework needs to be created that enables biorefineries to become competitive by setting frameworks for managing scale and

Enforceable targets with real incentives.

Strategies

 Understanding between government and farmers •Creating incentives for investment Strengthening environmental policies •Creating business framework

Research Recommendations

• 80% of India's potential biomass is used in a decentralized and unorganized manner and is not commercially viable at the scale required in India.

• Only with sufficient investment, driving the development of technology and the scalability should be developed

• A mechanism to enforce sustainability need to be implemented.

• India will need to align with global environmental standards and among its states.

Measurement practices and targets should be established in a focused and achievable way,

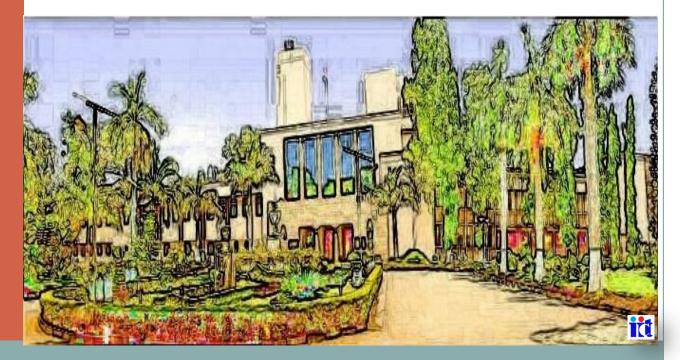
i.e. for biofuel content in aircraft fuel and diesel targets.

Key recommendations

•Driving the technology development •Enforcement of process sustainability Global environmental. standards •Targets should be established in a focussed way

Conclusions

- Biorefinery show promises both for industrialized and developing countries and can make a significant contribution to sustainable development by adding value to the sustainable use of biomass.
- Biorefineries are expected to contribute to an increased competitiveness and prosperity in an economically, socially, and environmentally sustainable manner.
- New competencies, new job opportunities and new markets are expected to be realized.
- Enhancing outreach and education may help spur serious discussions on innovations in both land-based and water based biomass.



THANK YOU

