Biorefinery: concept to reality

EU-India Brokerage Event on Bio-Economy and SAHYOG Stakeholder conference

Robert Bakker, Ph.D. robert.bakker@wur.nl

Contents

Drivers and importance of biomass

- Biorefinery & biomass pretreatment: concepts
- Examples from industry and research
- Recommendations

Alternative energy sources

Comparison of the basic-principles of the petroleum refinery and the biorefinery

Summarising the concept

- Biorefining is the Sustainable Processing of Biomass into a Spectrum of Marketable Bio-based, Products & Bioenergy
- Sustainable: maximising profits, minimising environmental impact, socially acceptable, ...
- Processing: integrated mechanical, (thermo)chemical, biological, ... conversion
- Biomass: land/marine crops, primary/secondary residues, wood
- Spectrum: more than one product
- Marketable: current/future markets (volumes, prices)

Biomass valorization

Energy or product-driven?

Energy-driven Biorefineries

Main RTD Aspects: Biomass Pre-treatment, Biomass Fractionation and Enzymatic Hydrolysis, Advanced Anaerobic Fermentation, Advanced Gasification, Valorization Processes for Biomass Fractions and Process Residues, Full Biomass-to-Value Chain Design/Optimization and Sustainability Assessment,

Approach in Biorefinery development

- Keep functionality of components as much as possible
- Integrate pretreatment with further downstream processes (e.g. separation, fermentation, catalysis)
- Product-driven pretreatment and fractionation
- Use insight in biomass composition and supply chain
- Biomass choice: crops, lignocellulose, fresh biomass, algae, residues
- Use technology know-how as input for developing sustainable value chains and vice versa

Our strategy in Biorefinery

Biorefineries: characterisation

- Starch- and sugar biorefineries
- Green biorefinery
- Plant oil (bio-)refineries
- Lignocellulose biorefineries
 - Wood-based
 - Agricultural residu and crops-based
- Microalgae and Seaweeds
- (civilisation biorefineries: waste valorisation)

	Parameter	Effect
Low Quality?	Ash ⊗	Cost of transport . Cost of ash removal. Higher dust emissions. Clogging ash removal system
and the second	N 😕	 Easily volatile and release in gas phase during combustion at temperatures between 800 - 1100 C NOx emissions - corrosion? Loss of nutrients
	S 🛞	 Easily volatile and release in gas during combustion. Produces gaseosus compounds SO3and SO4 SOx emissions Corrosive effects
	CI 🛞	 Easily volatile and release in gas during combustion HCl formation → corrosion Cl influences the formation of polychlorinated dibenzodioxins and furans (PCDD/F) Agglomeration (with K)
A A A A A A A A A A A A A A A A A A A	Ca 😊	 Increase the melting temperaturte of ash Relevant plant nutrient, ash can be recycled as a fertiliser
and the parts	Mg 😊	- Increase the melting temperature of ash
	K	 Lowering ash melting point: Slagging and deposit formation in furnaces and boilers Main aerosol forming during combustion Lowering of the efficiency, higher operating cost KCL formation in the gaseous phase Raise emission of fine PM and increases fouling in the boiler. KCL causes corrosion of heating surfaces and it is a catalyst of NOx Can be recycled as fertiliser
	Na	 Lowering ash melting point: Slagging and deposit formation in furnaces and boilers Main aerosol forming during combustion Raise emission of fine particulate matter PM Increases fouling in the boiler

Starch Biorefinery (AVEBE)

Allergenity

Biological Value

Nutritional

Properties

Solubility

Food Safety

Solanic Potato Protein

Vegetable Protein

Animal Protein

Source: <u>www.avebe.com;</u> www.solanic.eu

Expanded polystyrene

Fully recycable packing or insulation material

Green Biorefinery

A Green Biorefinery processes (fresh) green biomass to an array of products

BIDSYNELGY

Integrated Lignocellulose BioRefinery

Multi-product biorefinery, focus on residues cellulose ethanol: C5 and lignin valorisation

From straw to fermentable sugars & lignin

Ethanol

BROSYNEr

Improvement of enzymatic degradability

BIOSYNELGY

Lignin application in wood-based panels

PF std PFL-15% Ph sub. PFL-25% Ph sub. PFL-35% Ph sub. PFL-45% Ph sub

Particleboards produced with PF resins where phenol was replaced by straw lignin at various levels

Step of plywood panels production.

Plywood panels

Testing of plywood at CHIMAR premises

Lignin valorization

- Abundantly available at relatively low costs
- Energy source
- Versatile raw material for many applications

- Additional revenues for Pulp&Paper industry and 2nd Generation Biorefinery industry
- Limited industrial applications due to complex structure

Lignin valorization

Biorefinery of (brown) seaweeds

WAGENINGENUR

Recommendations

- Integrated approach: not biofuels versus biobased products, but biofuels AND biobased products (+ food)
- Current bioenergy production is important in supply chain development of many feedstocks
- There should be a level playing field in applying biomass to different sectors (energy, chemical sector)
- First integrated biorefineries will develop around current agro-industrial industries, and pulp & paper industries
- Clustering of different industries is important

Biorefinery cluster in N. France

Thank you for your attention

