

Biomass – Availability and Applications

DSM India Innovation Centre

Internal

HEALTH • NUTRITION • MATERIALS

Agenda

- Biomass Availability in India
- Biomass Value Chain
- Biomass Energy Conversion Overview
- Biomass Energy Focus : Biogas and Biofuels
- Biochemical's and End Application
- Succinic Acid Example : Use in Varied Industries
- Ongoing R&D Commercial Activities: India

LARGE AVAILABILITY OF BIO ENERGY RESOURCES IN INDIA

India has 184 million hectares of arable land 1.5 billion MT/year of food + agri residues is produced

40 % of arable land is under 1 season mono cropping India has 58 million hectares of grazing land. Large scope for Short Cycle Cellulosic Biomass

India has 280 million bovine animals & 500 million chicken <u>1.5 billion MT/year of Cow dung & Poultry litter</u>

Present Availability and Surplus Biomass and Projection for 2015 - Crop and Agri Residues are the biggest Source

					In MT
	Biomass wastes sources	Present Availability Status	Present Surplus	Availability Projections (2015)	Projected Surplus (2015)
	Crop and Agro- processing waste	523.4	127.3	680.5	226.0
:	Roadside*	10.7	6.4	17.3	10.4
	Wasteland*	27.1	16.3	40.9	24.5
	Forest waste*	157.2	94.3	196.8	118.1
	Agro-forestry waste*	9.1	5.4	9.2	5.5
	Dung -livestock	267.8	-	266.3	-
	Poultry droppings	4.9	-	6.9	-
	Total	1000.1	249.7	1217.9	384.5

Source: Secondary Search, Biomass Asia Workshop

.

Page 3 * *Only 60% of the surplus quantity of the biomass is assumed to be vailable for energy generation.

Wheat Straw, Rice Straw, Sugarcane Tops, Bagasse and Rice Husk – Key Biomass Agri Residues

* Source: Universal Consulting

Page 4

Alternative Uses of Key Biomass - Wheat, Sugar and Paddy

Page 5

Biomass Value Chain

Biomass Application – Energy

Biomass Energy Conversion Overview

Focus Areas Biofuels and Biogas

Where did it start and where are we heading?

Need for new and sustainable energy resources

First generation

Ligno-cellulosic

DSM frontrunner in Ligno-cellulosic biofuel tech

- DSM's yeast and enzyme technologies is unique combination
- New robust enzymes-mix able to break down biomass more efficiently
- Advanced yeast strain capable of converting C5/C6 sugars into bio-ethanol
- DSM engaged with Ligno-cellulosic bio-ethanol front-runners and on-track for commercial demonstration facilities to start up in 2014
- UBS estimates 2G: 40bn gallon market by 2020
- Enzymes / Yeasts ~ 20% of costs
- NREL recently increased their enzyme cost outlook to \$0.34 / gallon

India Oil Status - Opportunity for Biofuels

Biogas as an Energy Source from Biomass

DSM Biogas India - Partnership with the PEDA(Govt. of India) on a revenue share model

Biogas plant

- 2004 capacity 235 mt of droppings (for 1 MW electricity)
- GHG reduction of ~ 1 mt CO₂-C eq./hr
- Winner of the best Green Power Plant in Asia Award in 2007
- In operation since 6th January 2012

Drivers for DSM

- Showcase DSM's abilities in the area
- Develop solutions for feedstock that are not currently being used to generate biogas
- Develop a relationship with the government and leverage it for future growth in the area of Bio-energy

Bio Based Chemicals for Industrial Applications

Major applications of these bio chemicals we have sized the market for below mentioned underlying markets

Bio Chemical	Pharma	Automotive	Food Processing	Personal Care	Furniture	Textiles	Construction	Paints & Coating	Pigments	Electronics	Paper
Succinic Acid											
Adipic Acid											
HMDA											
Lactic Acid											
D-Lactic Acid											
Itaconic Acid											
Levulinic Acid											
Sebacic Acid											

Major application industries

Example: Huge additional market potential biosuccinic

Ongoing R&D and Commercial Activity in India: Biofuels and Biochemicals

Commercial And R&D Activities – BioBased Products and Chemicals India (1/3)

Commercial And R&D Activities – BioBased Products and Chemicals India (2/3)

Players	Details				
TIFAC - NIIST	• TIFAC under its Bioprocess & Bioproducts Programme supported National Institute of Inter disciplinary science and technology (NIIST) -Trivandrum to establish a dedicated Centre for Biofuels to carry out advanced research in ligno- cellulosic ethanol production along with the development of other bio-chemicals for improved process economics to address some of the critical technology issues in the sector				
	 NIIST has been in the forefront of biomass derived ethanol research and has been working on cellulase enzyme production, strain improvement of cellulase producers, production of glucose tolerant beta-glycosidase and fermentation process development 				
DBT - ICT	 The Department of Biotechnology, Ministry of Science and Technology, Government of India has funded and established a centre of excellence as DBT- ICT Centre for Energy Biosciences 				
	 DBT - ICT claim to have come out with a technology for lignocellulosic ethanol which is expected to make production of ethanol more competitive than by any other known technology. The necessary intellectual property protection has been ensured and MoU has been signed with India Glycols Ltd, India to set up a 10 ton biomass/day plant at their Kashipur site in Uttarakhand 				

Commercial And R&D Activities – BioBased Products and Chemicals India (3/3)

Thank You

ANNEXURES

INDIAN POTENTIAL - AGRICULTURE RESIDUES

350 million MT of <u>sugarcane</u>, generates > 140 million MT/year of agricultural residues at field & sugar mill (cane trash, bagasse, filter cake).

90 million MT of <u>rice</u>, generates > 110 million MT/year of agriculture residues at field & rice mill (rice straw, rice husk)

- Cane trash (all over India) Rice straw (in Punjab, Haryana and Western U.P.) are burnt in the fields ... total quantity is of 70 to 80 million MT/year.
 This is a major source for Environmental Pollution and hence converting this to Biomass Briquettes would mitigate Environment Pollution apart from being a source for Renewable Energy.
- In addition, ground nut husk, maize stalks & corn cobs, cotton stalks, mustard waste, pulses stalks, palm fronds, etc., are surplus agri residues in field (crop residues).
- The availability of agri residues for energy is > 120 million MT/year of crop residues + 130 million MT/year of Bagasse & Husk

ILLUSTRATION - FUEL SHIFT BRIQUETTES FROM RICE STRAW/ CANE TRASH & PELLETS FROM BAMBOO/ FOREST WASTE

Rice straw

India has 43.81 million hectares in rice cultivation with annual production of > 90 million MT paddy near equivalent amount of rice straw.

Rice straw is animal feed in many parts of India.

In Punjab, Haryana & parts of Western UP the rice straw is burnt in fields --> 40 million MT/year

Cane trash

India has 5.06 million hectares in sugarcane cultivation with annual production of around 350 million MT.... around 10% of this quantity is cane trash.

All over India, Cane trash is burnt in the fields \rightarrow 35 million MT/year

Potential for 50 million MT/ year Briquettes, for firing in Industrial Boilers, competing with landed cost of coal : Indian (Rs 3,600/MT) ; Imported (\$ 100/MT)

Briquettes - Feed Stock for Industrial Boilers

□ India has 8.96 million hectares (out of 70 million hectares forest area) under Bamboo cultivation with growing stock of 80.43 million MT.

□ Fast growing & non flowering species of bamboo, gives potential for

- # very significant enhancement in bamboo growing stock
- **#** bamboo to be adopted for energy plantations
- **50 million MT/year of Bamboo for energy could be achieved through**

expanding area under bamboo to 10 million hectares

shifting to high yield/non flowering bamboo species.

Bamboo pellets can be an effective cooking fuel in rural households

Pellets could be retailed in 15 kg bags @ Rs 1,000, which would be less than actual cost (including subsidy component) of displaced kerosene

Pellets - cooking fuel for rural households

Chullah (> 10% efficiency)

Kerosene Stove

Pellets + Smokeless Stove (> 40% efficiency)

Page 30