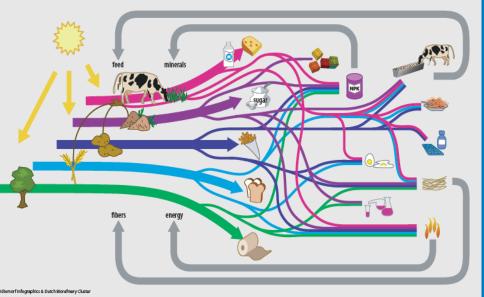


Strategic Research Agenda (SRA) Bio-based Economy

Europe- India


Ir. Kees W. Kwant Rebecca van Leeuwen

With contributions from:

Ludo Diels, Kathy Elst, Neeta Sharma, Silvia Tabacchioni, Priyangshu Sarma, Piyush Joshi, Reeta Goel, Neera Sarin, Rob Bakker.

Co-Authors:

Deepak Pant, Luigi Chiarini, Harshita Negi, Divya Srivastava, Heike Schneider, Karin Metzlaf, Rupam Kataki, Ventaka Mohan

Content

- The bio-economy approach;
- Methodology;
- Biomass Availability;
- Biorefinery approach;
- Markets and Policies;
- · Conclusions.

Sustainable Biobased Approach

Integrated Food & Materials production

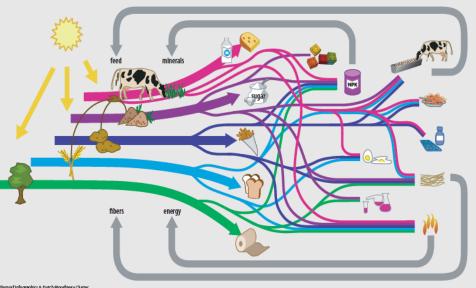
- Smart agriculture
- Increased production

Sustainable and Rural Development

- Local Resources and local use
- Tapping unused or abandoned land

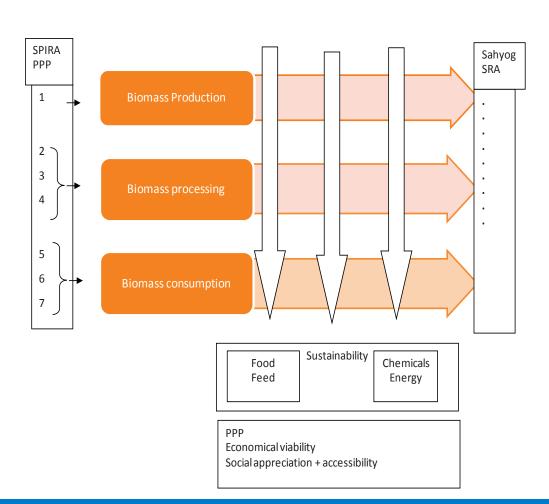
Smart use of biomass

- Circular Economy, Cascading
- Biorefinery


Ref: http://www.sahyog-europa-

india.eu/images/D2_3_Strategic_Advise_on_Biobased_Research_based_on_Sahyog_inventory_V3.pdf

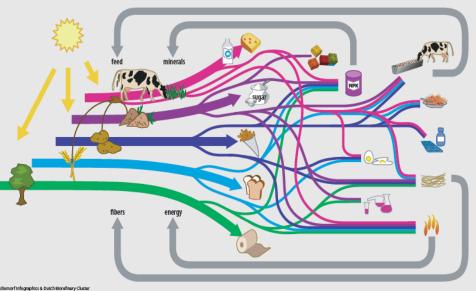
Methodology


SRA Bioeconomy India - Europe

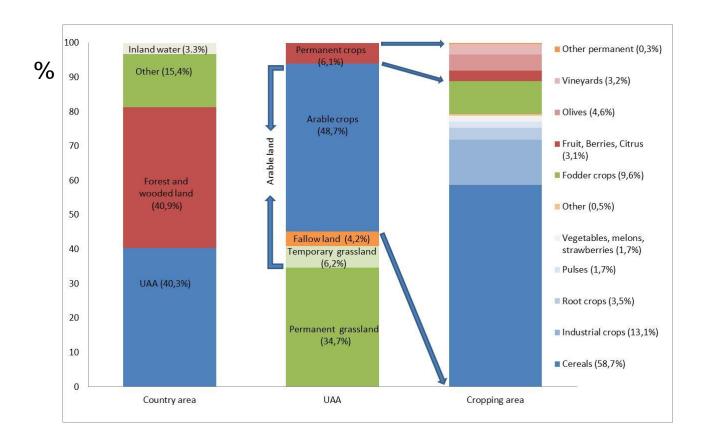
Information from:

- -Reviews
 - -Existing Roadmaps
- -Workshops with Industry
- -Questionnaire
- -Analysis- Evaluation
- -Conclusions

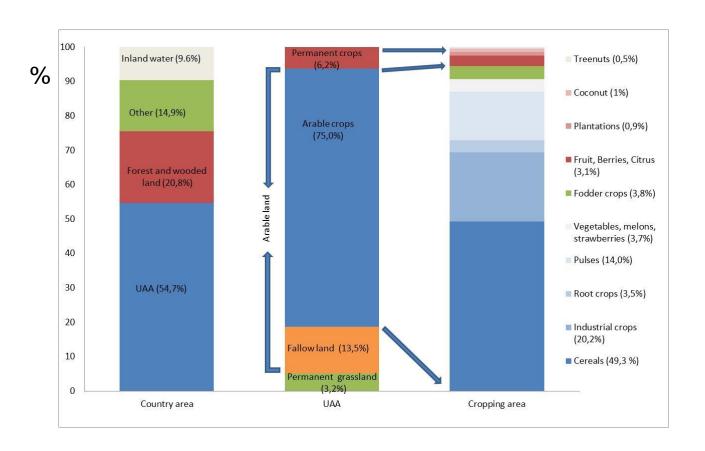
Chapters:

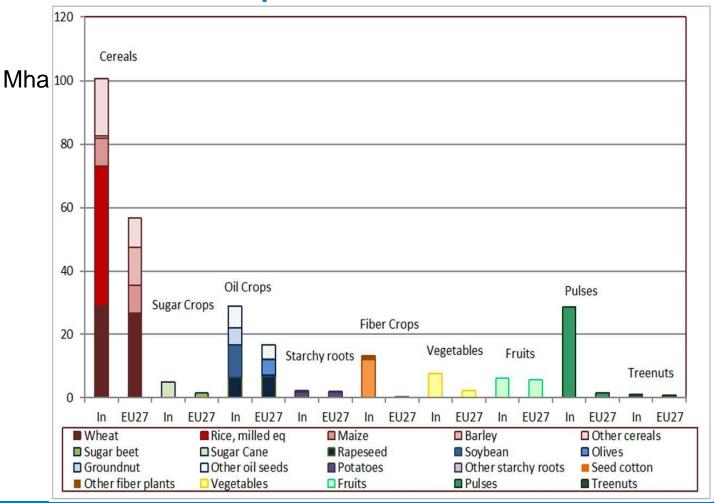

- 1. Vision
- 2.Biomass Production
- 3.Processing
- 4. Products/ Markets
- 5. Conclusions

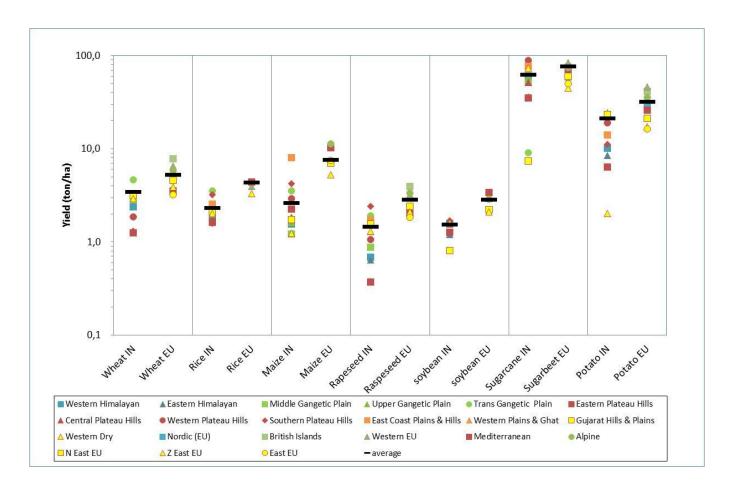
Biomass Availability


Comparing EU-27 and India

	EU-27		India	
	(Mha)	(%)	(Mha)	(%)
Total country area	432.5		328.7	
Inland water	14.3		31.4	
Land area	418.2	100	297.3	100
Utilized Agricultural Area (UAA)	174.5	41.7	179.8	60.5
Arable land	103.1	24.6	157.5	53.0
Permanent crops	10.6	2.5	12.1	4.1
Permanent meadows & pastures	60.5	14.5	10.1	3.4
Forest area and other wooded land	177.0	42.3	68.4	23.0
Other land	66.8	16.0	49.0	16.5


Land-use in Europe

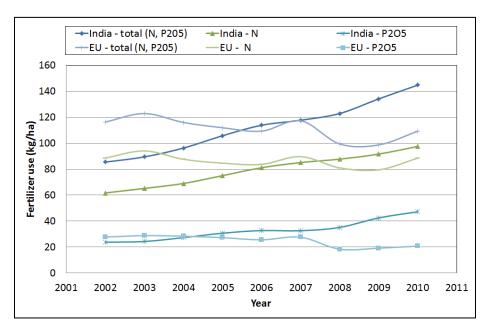

Land-use in India


Agricultural crops

Yields (ton/ha), logarithmic scale

Large Regional Differences

Potential
- to increase
Yields



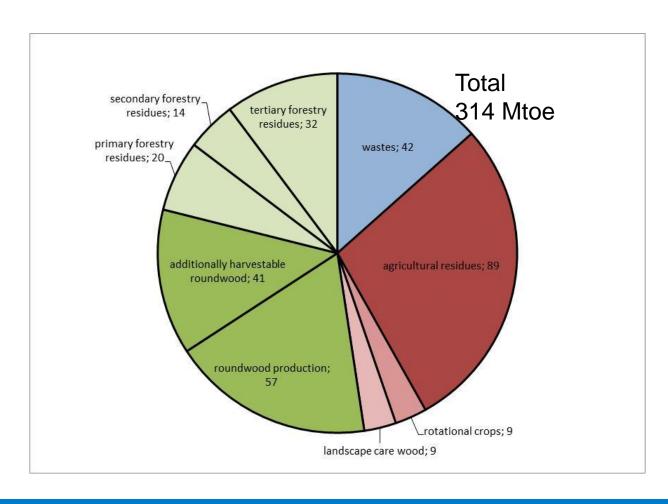
Yield Improvements

Depends on:

- Soil quality, degradation
 - (water, wind, salinisation, nitrates,)
- Water availability (rain, monsoon, climate change
- Fertiliser, pesticides

Fertilizer supply EU, India

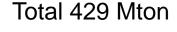
Biodiversity

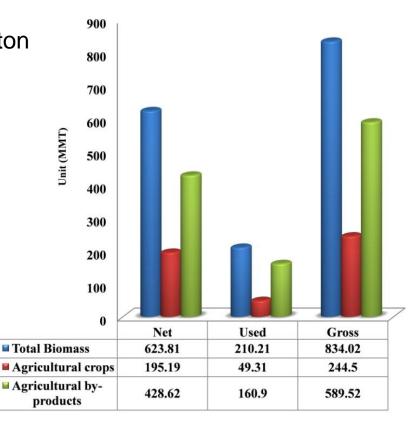

Biomass potential Mtoe in Europe

Mtoe

Total availability: 314

waste 42 agricultural 107 forestry 164


From Biomass Futures


Biomass Potential India from agricultural residues

@10GJ/ton

= 4.3 EJ

=

Total Biomass Resource Potential

> Agricultural Crops

- ▶ Starch Crops (Potato, Sweet Potato)
- Oil Crops (Oil seeds, Soybean, Groundnut, Sunflower, sesamum, safflower, Niger, Linseed)
- → Sugar Crops (Sugarcane)

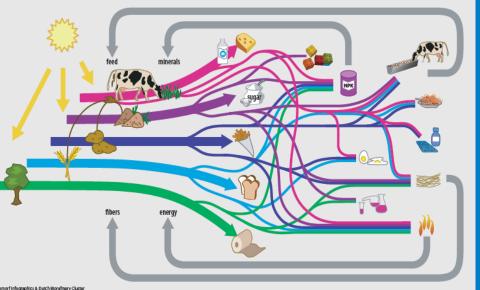
> Agricultural by-products

- Straw, Husk, Stover (Rice, Wheat, Maize, Bajra, Ragi, Grams, Pulses)
- Fruit biomass (Banana, cotton, Mesta, Coconut)
- Processed residues (Coffee, Tea, Tobacco, Turmeric)

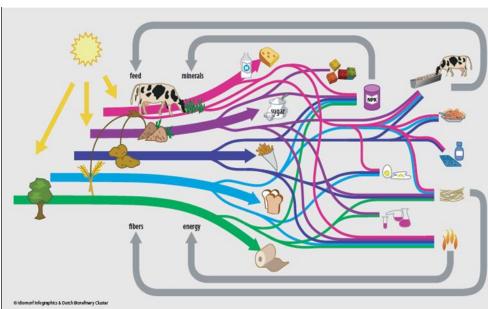
Biomass Availability Summary M odt

Table 2. Comparison of Biomass and Wastes					
Biomass and Waste resources	India	Europe			
(Millions of dry tonnes)					
Agricultural residues	214	109			
Industrial Waste	n.a.	290			
Municipal Solid Waste	67	251			
Organic degradable content	51 %	38%			
Forestry fuel wood, Mton	45	21			

Research Recommendations


- Smart agricultural intensification, site and crop specific, (soil, water, nutrients, fertilizers);
- Supply chain management (logistics, reduction of losses, storage);
- Improved waste collection, treatment, valorisation to products and energy;
- Improved characterisation and administration of biomass and waste resource flows.

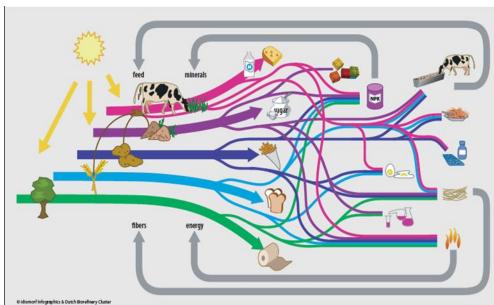
Biorefineries



Drivers:

- Climate change
- Security of supply
- Rural development
- Sustainability

 Biorefineries = highly energy efficient and low cost



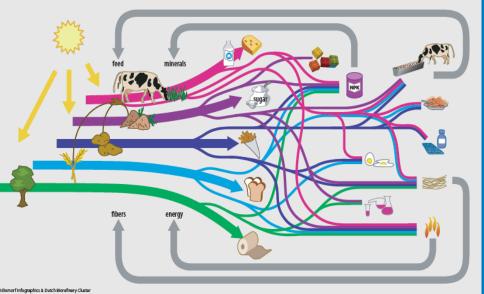
Future of Biorefineries

- New job opportunities
- New markets
- Production of biofuels (transport sector) as main focus
- Input flexibility
- Demonstration

Support for market introduction

- Bring sectors together:
 - Agro, forestry, chemicals, energy,
- Region specific
 - Coasts, wetlands, mountaints, biodiversity
- Market incentives:
 - Blending obligations, purchase mandates
- Financial support:
 - Capital, fiscal, etc.

Research Recommendations for biorefineries


- Development and Demonstration of Improved Biorefineries:
 - Development of smart enzyme systems at lower cost price;
 - Development of bio-based value chains (from crop to chemical and energy); Lignocellulosic biorefineries towards production of fuels and chemicals extraction;
 - Bio-refinery based on gases (CO₂/methane) towards fuels and chemicals
 - Analysis and optimisation of geographical locations for bio-based production and products.
- Utilisation of Residues
 - Development of smart micro-organisms for conversion of residues and waste
 - Development of smart processing equipment, process intensification;
 - Improved thermal conversion by gasification and pyrolysis for simultaneous production of chemicals and energy;
 - Improved anaerobic digestion by bacteria selection, pre-treatment, post treatment to fertiliser;

Markets and Policies

OR



Market is defined by society

- Drivers
- Research/ Technologies
- Policies
- Regulations
 - Taxes;
 - Obligations;
 - Subsidies.
- Market conditions

Europe: Legislation: Waste Directive

- Obligation for all Member States:
 - Reduce Land-filling to less than 50%;
 - Sanitation of Landfills;
 - Recycling of Waste;
 - Clean incineration, no dioxins etc.
- Member State measures
 - Tax on landfilling: 80 €/tonnes in NL

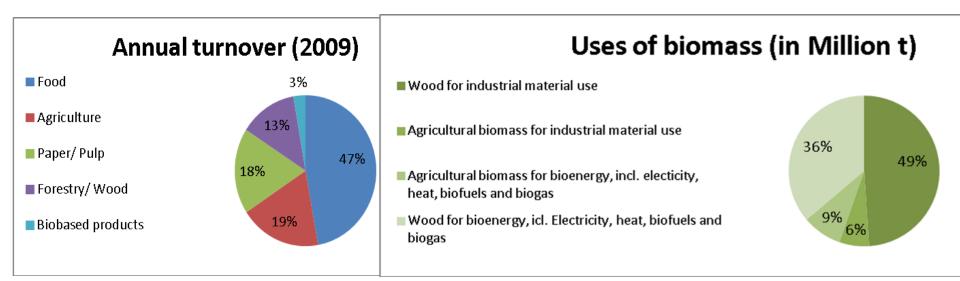
Renewable Energy Directive

- Obligation for all Member States to achieve:
 - In 2020
 - > 20% Renewable Energy
 - > 20% GHG reduction
 - -> Market for biomass!

In 2030

27% Renewable Energy

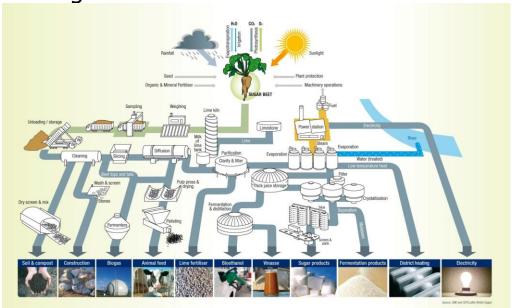
40% GHG reduction



Biomass for Markets in Europe

Market: 2 trillion €

Non Food Biomass



Europe: Common Agricultural Policy

- Stop of Production quota
 - Sugar, Milk
- Open Borders
- Opportunities for increased production -> Sugarbeet

Research & Development Bioeconomy & Climate & Energy

- Societal Challenges:
 - Food Security
 - Resource Security
 - Climate Change/ Sustainability
 - Economic Benefits/Jobs
- -> Horizon 2020
 - > 80 billion €
- JTI Biobased Industries

- Climate package 2030
 - 40% CO2 reduction
 - 27 % Renewable Energy
 - No target for biofuels yet

India & Biomass

- Drivers:
 - Poverty alleviation
 - Food security
 - Energy security
- Strive for low carbon, green economy

- Focus on Energy
 - Improved Cooking Stove
 - > 10 million in 2022
 - Biomass Power ->4.6 GW
- Biotech
 - Bioplastics (ban)
- Medicine:
 - Ayurvedic treatments

India: Products to be considered:

Biofuels	Bioprocess	Bioproducts
2nd, 3rd generation Cellulosic ethanol Biobutanol Bio-oil and Biochar Bioethers Bio- SPK (Aviation biofuels)	 Mechanical biological treatment Thermal Depolymerization Biomethanation Trans esterification Biomass gasification Enzymatic and acid hydrolysis 	 Biomaterials for biomedical applications Bioplastics, biopolymers and bioresins Biopesticides / biofertilizers Biobased cosmetics Biobased insulation materials Bio based chemicals Biobased Solvents for Biopharma applications Biobased lubricants Biobased sorbents Biobased surfactants Biobased flocculants Biomass to renewable chemicals using thermochemical methods (for instance, biomass -> syngas -> chemicals)

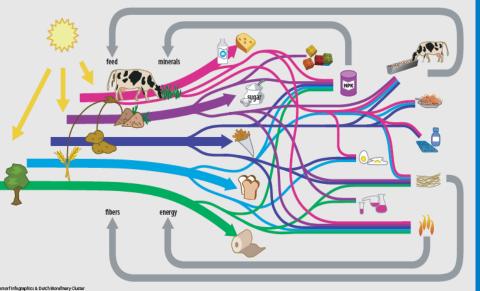
No Level Playing Field for Renewable Energy and Renewable Materials

- Financial Support for
 - Renewable Energy
 - Research & Development
- No support for biobased materials and chemicals
 - > Need for action
- Public Procurement of Bio-based Products

Research recommendations

- Develop agreement on sustainable production and use of biomass;
- Develop a common political framework to stimulate the bio-based economy approach (level playing field);
- Develop standards for residues and declassify them as waste;
- Develop standards for performance criteria of bio-based products
-

Research recommendations 2


- Develop Public Procurement of bio-based products;
- Stimulate Zero Waste communities and production system (circular economy);
- Develop awareness raising and education programmes on a sustainable bio-economy with proper waste management;
- Develop Training and Education for researchers and engineers in the bioeconomy (Human Capital)

Conclusion

Sustainable Bioeconomy & Bioenergy

- Need for collaboration
 - Continue with joint projects
 - > Biomass resources, smart agriculture
 - > Biorefineries, valorisation of residues
 - > Policies to implement a sustainable bioeconomy
- Build on existing industrial partnerships
 - Public Private Partnerships
 - Focus on integrated biorefinery approach
 - > Creating Value, jobs and new products
 - > Reduction of Green house Gases
- Create enabling environment (by Govts)

Conclusions

- Policy measures create economic opportunities for industry;
- Integration: Energy, Waste, Agriculture, Products;
- European Commission supports measures;
 - Job Creation, Rural Development;
 - Sustainable Development;
 - Cleaner Environment.
- What Policies in India support this?